Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 18(24): e202300586, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37733585

ABSTRACT

This work presents the design, synthesis, and MAO-B inhibitor activity of a series of chalcogenyl-2,3-dihydrobenzofurans derivatives. Using solvent- and metal-free methodology, a series of chalcogen-containing dihydrobenzofurans 7-9 was obtained with yields ranging from 40% to 99%, using an I2 /DMSO catalytic system. All compounds were fully structurally characterized using 1 H and 13 C NMR analysis, and the unprecedented compounds were additionally analyzed using high-resolution mass spectrometry (HRMS). In addition, the mechanistic proposal that iodide is the most likely species to act in the transfer of protons along the reaction path was studied through theoretical calculations. Finally, the compounds 7b-e, 8a-e, and 9a showed great promise as inhibitors against MAO-B activity.

2.
Nat Prod Res ; 37(18): 3136-3144, 2023.
Article in English | MEDLINE | ID: mdl-36331425

ABSTRACT

Alkylamides are secondary metabolites in Acmella oleracea and display wide applications in treating several diseases. Since alkylamides can inhibit pain, this work aims to evaluate the antinociceptive profile of A. Oleracea methanolic extracts used in vivo and in silico assays. The extracts inhibited the neurogenic and inflammatory phases of the formalin test, ratifying the antinociceptive effect of alkylamides. Furthermore, the results from molecular docking demonstrated the interaction of A. oleracea alkylamides with the CB1/CB2 and TRPV1 receptors. Additionally, the crude methanolic extract of flowers did not induce potential side effects related to the classical cannabinoid tetrad: hypolocomotion and catalepsy. In conclusion, this work confirms the potential of the alkylamides of A. Oleracea as antinociceptive agents and, for the first time, correlates its effects with the endocannabinoid and vanilloid systems through in silico assays.

3.
Nat Prod Res ; 37(4): 592-597, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35422173

ABSTRACT

Opioid receptors mediate antinociceptive effects. Methanolic fractions from sugarcane varieties (MFSCf) were evaluated in classic nociception models. Interactions between bioactive compounds and the µ-opioid receptor (µOR) through docking analysis were also studied. Five methanolic fractions of sugarcane juice were obtained and analysed by LC-ESI-MS/MS. The fractions and standards of phenolic compounds were evaluated in a nociception model using the formalin test. All MFSCfs exhibited antinociceptive activity in the first phase of the formalin test. Docking analyses corroborates with the in vivo test results, suggesting that the phenolic substances are able to activate µOR. These results, for the first time, implicate phenolic constituents from sugarcane juice and other phenolic compounds in the activation of µOR. The antinociceptive activity of fractions from sugarcane juice suggests the potential pharmacological use of this species, widely cultivated in Brazil.


Subject(s)
Flavonoids , Saccharum , Flavonoids/pharmacology , Molecular Docking Simulation , Receptors, Opioid , Tandem Mass Spectrometry , Analgesics/pharmacology , Phenols/pharmacology , Methanol
SELECTION OF CITATIONS
SEARCH DETAIL
...