Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 119(18): 181301, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29219593

ABSTRACT

We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042±12)-kg fiducial mass and in the [5,40] keV_{nr} energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93±0.25)×10^{-4} events/(kg×day×keV_{ee}), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c^{2}, with a minimum of 7.7×10^{-47} cm^{2} for 35-GeV/c^{2} WIMPs at 90% C.L.

2.
Phys Rev Lett ; 118(10): 101101, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28339273

ABSTRACT

We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 431_{-14}^{+16} day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9σ; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8σ, from a previous analysis of a subset of this data, to 1.8σ with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7σ.

3.
Phys Rev Lett ; 115(9): 091302, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26371638

ABSTRACT

We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an unbinned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1σ for all periods, suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8σ, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of weakly interacting massive particles to electrons is excluded at 4.8σ.

4.
Rev Sci Instrum ; 84(9): 093105, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089814

ABSTRACT

We have developed an atom trap trace analysis (ATTA) system to measure Kr in Xe at the part per trillion (ppt) level, a prerequisite for the sensitivity achievable with liquid xenon dark matter detectors beyond the current generation. Since Ar and Kr have similar laser cooling wavelengths, the apparatus has been tested with Ar to avoid contamination prior to measuring Xe samples. A radio-frequency plasma discharge generates a beam of metastable atoms which is optically collimated, slowed, and trapped using standard magneto-optical techniques. Based on the measured overall system efficiency of 1.2 × 10(-8) (detection mode), we expect the ATTA system to reach the design goal sensitivity to ppt concentrations of Kr in Xe in <2 h.

5.
Phys Rev Lett ; 111(2): 021301, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23889382

ABSTRACT

We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days×34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with 129Xe and 131Xe nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c², with a minimum cross section of 3.5×10(-40) cm² at a WIMP mass of 45 GeV/c², at 90% confidence level.

6.
Phys Rev Lett ; 109(18): 181301, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23215267

ABSTRACT

We report on a search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso for 13 months during 2011 and 2012. XENON100 features an ultralow electromagnetic background of (5.3 ± 0.6) × 10(-3) events/(keV(ee) × kg × day) in the energy region of interest. A blind analysis of 224.6 live days × 34 kg exposure has yielded no evidence for dark matter interactions. The two candidate events observed in the predefined nuclear recoil energy range of 6.6-30.5 keV(nr) are consistent with the background expectation of (1.0 ± 0.2) events. A profile likelihood analysis using a 6.6-43.3 keV(nr) energy range sets the most stringent limit on the spin-independent elastic weakly interacting massive particle-nucleon scattering cross section for weakly interacting massive particle masses above 8 GeV/c(2), with a minimum of 2 × 10(-45) cm(2) at 55 GeV/c(2) and 90% confidence level.

SELECTION OF CITATIONS
SEARCH DETAIL
...