Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 9: 234-246, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29766031

ABSTRACT

Adeno-associated virus (AAV) has provided the gene therapy field with the most powerful in vivo gene delivery vector to realize safe, efficacious, and sustainable therapeutic gene expression. Because many clinically relevant properties of AAV-based vectors are governed by the capsid, much research effort has been devoted to the development of AAV capsids for desired features. Here, we combine AAV capsid discovery from nature and rational engineering to report an AAV9 capsid variant, designated as AAV9.HR, which retains AAV9's capability to traverse the blood-brain barrier and transduce neurons. This variant shows reduced transduction in peripheral tissues when delivered through intravascular (IV) injection into neonatal mice. Therefore, when IV AAV delivery is used to treat CNS diseases, AAV9.HR has the advantage of mitigating potential off-target effects in peripheral tissues compared to AAV9. We also demonstrate that AAV9.HR is suitable for peripheral tissue-detargeted CNS-directed gene therapy in a mouse model of a fatal pediatric leukodystrophy. In light of recent success with profiling diversified natural AAV capsid repertoires and the understanding of AAV capsid sequence-structure-function relationship, such a combinatory approach to AAV capsid development is expected to further improve vector targeting and expand the vector toolbox for therapeutic gene delivery.

2.
Sci Rep ; 7: 43339, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28277549

ABSTRACT

Could new oral vaccine technologies protect endangered wildlife against a rising tide of infectious disease? We used captive chimpanzees to test oral delivery of a rabies virus (RABV) vectored vaccine against Ebola virus (EBOV), a major threat to wild chimpanzees and gorillas. EBOV GP and RABV GP-specific antibody titers increased exponentially during the trial, with rates of increase for six orally vaccinated chimpanzees very similar to four intramuscularly vaccinated controls. Chimpanzee sera also showed robust neutralizing activity against RABV and pseudo-typed EBOV. Vaccination did not induce serious health complications. Blood chemistry, hematologic, and body mass correlates of psychological stress suggested that, although sedation induced acute stress, experimental housing conditions did not induce traumatic levels of chronic stress. Acute behavioral and physiological responses to sedation were strongly correlated with immune responses to vaccination. These results suggest that oral vaccination holds great promise as a tool for the conservation of apes and other endangered tropical wildlife. They also imply that vaccine and drug trials on other captive species need to better account for the effects of stress on immune response.


Subject(s)
Drug Carriers , Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/veterinary , Monkey Diseases/prevention & control , Administration, Oral , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Ebola Vaccines/administration & dosage , Ebola Vaccines/genetics , Ebolavirus/genetics , Hemorrhagic Fever, Ebola/prevention & control , Injections, Intramuscular , Pan troglodytes , Rabies virus/genetics , Treatment Outcome , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
3.
Proc Natl Acad Sci U S A ; 111(24): 8873-6, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24912183

ABSTRACT

Infectious disease has only recently been recognized as a major threat to the survival of Endangered chimpanzees and Critically Endangered gorillas in the wild. One potentially powerful tool, vaccination, has not been deployed in fighting this disease threat, in good part because of fears about vaccine safety. Here we report on what is, to our knowledge, the first trial in which captive chimpanzees were used to test a vaccine intended for use on wild apes rather than humans. We tested a virus-like particle vaccine against Ebola virus, a leading source of death in wild gorillas and chimpanzees. The vaccine was safe and immunogenic. Captive trials of other vaccines and of methods for vaccine delivery hold great potential as weapons in the fight against wild ape extinction.


Subject(s)
Communicable Disease Control , Ebola Vaccines/therapeutic use , Hemorrhagic Fever, Ebola/prevention & control , Pan troglodytes/immunology , Vaccination , Animals , Animals, Wild , Communicable Diseases/immunology , CpG Islands , Disease Models, Animal , Endangered Species , Female , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C
4.
J Bone Miner Res ; 27(3): 509-23, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22113859

ABSTRACT

Odanacatib (ODN) is a selective and reversible inhibitor of cathepsin K (CatK) currently being developed as a once-weekly treatment for osteoporosis. In this study, we evaluated the effects of ODN on bone turnover, bone mineral density (BMD), and bone strength in the lumbar spine of estrogen-deficient, skeletally mature rhesus monkeys. Ovariectomized (OVX) monkeys were treated in prevention mode for 21 months with either vehicle, ODN 6 mg/kg, or ODN 30 mg/kg (p.o., q.d.) and compared with intact animals. ODN treatment persistently suppressed the bone resorption markers (urinary NTx [75% to 90%] and serum CTx [40% to 55%]) and the serum formation markers (BSAP [30% to 35%] and P1NP [60% to 70%]) versus vehicle-treated OVX monkeys. Treatment with ODN also led to dose-dependent increases in serum 1-CTP and maintained estrogen deficiency-elevated Trap-5b levels, supporting the distinct mechanism of CatK inhibition in effectively suppressing bone resorption without reducing osteoclast numbers. ODN at both doses fully prevented bone loss in lumbar vertebrae (L1 to L4) BMD in OVX animals, maintaining a level comparable to intact animals. ODN dose-dependently increased L1 to L4 BMD by 7% in the 6 mg/kg group (p < 0.05 versus OVX-vehicle) and 15% in the 30 mg/kg group (p < 0.05 versus OVX-vehicle) from baseline. Treatment also trended to increase bone strength, associated with a positive and highly significant correlation (R = 0.838) between peak load and bone mineral content of the lumbar spine. Whereas ODN reduced bone turnover parameters in trabecular bone, the number of osteoclasts was either maintained or increased in the ODN-treated groups compared with the vehicle controls. Taken together, our findings demonstrated that the long-term treatment with ODN effectively suppressed bone turnover without reducing osteoclast number and maintained normal biomechanical properties of the spine of OVX nonhuman primates.


Subject(s)
Biphenyl Compounds/pharmacology , Bone Density Conservation Agents/pharmacology , Bone Remodeling/drug effects , Lumbar Vertebrae/drug effects , Organ Size/drug effects , Ovariectomy , Animals , Female , Macaca mulatta
SELECTION OF CITATIONS
SEARCH DETAIL
...