Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Immunother Cancer ; 12(5)2024 May 30.
Article in English | MEDLINE | ID: mdl-38816232

ABSTRACT

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) targeting neoantigens can effectively treat a selected set of metastatic solid cancers. However, harnessing TILs for cancer treatments remains challenging because neoantigen-reactive T cells are often rare and exhausted, and ex vivo expansion can further reduce their frequencies. This complicates the identification of neoantigen-reactive T-cell receptors (TCRs) and the development of TIL products with high reactivity for patient treatment. METHODS: We tested whether TILs could be in vitro stimulated against neoantigens to achieve selective expansion of neoantigen-reactive TILs. Given their prevalence, mutant p53 or RAS were studied as models of human neoantigens. An in vitro stimulation method, termed "NeoExpand", was developed to provide neoantigen-specific stimulation to TILs. 25 consecutive patient TILs from tumors harboring p53 or RAS mutations were subjected to NeoExpand. RESULTS: We show that neoantigenic stimulation achieved selective expansion of neoantigen-reactive TILs and broadened the neoantigen-reactive CD4+ and CD8+ TIL clonal repertoire. This allowed the effective isolation of novel neoantigen-reactive TCRs. Out of the 25 consecutive TIL samples, neoantigenic stimulation enabled the identification of 16 unique reactivities and 42 TCRs, while conventional TIL expansion identified 9 reactivities and 14 TCRs. Single-cell transcriptome analysis revealed that neoantigenic stimulation increased neoantigen-reactive TILs with stem-like memory phenotypes expressing IL-7R, CD62L, and KLF2. Furthermore, neoantigenic stimulation improved the in vivo antitumor efficacy of TILs relative to the conventional OKT3-induced rapid TIL expansion in p53-mutated or KRAS-mutated xenograft mouse models. CONCLUSIONS: Taken together, neoantigenic stimulation of TILs selectively expands neoantigen-reactive TILs by frequencies and by their clonal repertoire. NeoExpand led to improved phenotypes and functions of neoantigen-reactive TILs. Our data warrant its clinical evaluation. TRIAL REGISTRATION NUMBER: NCT00068003, NCT01174121, and NCT03412877.


Subject(s)
Antigens, Neoplasm , Lymphocytes, Tumor-Infiltrating , Receptors, Antigen, T-Cell , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Antigens, Neoplasm/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Mice , Immunologic Memory , Animals , Female , Phenotype , Neoplasms/immunology
2.
Mol Ther ; 32(2): 503-526, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38155568

ABSTRACT

Multiple myeloma (MM) is a rarely curable malignancy of plasma cells. MM expresses B cell maturation antigen (BCMA). We developed a fully human anti-BCMA chimeric antigen receptor (CAR) with a heavy-chain-only antigen-recognition domain, a 4-1BB domain, and a CD3ζ domain. The CAR was designated FHVH33-CD8BBZ. We conducted the first-in-humans clinical trial of T cells expressing FHVH33-CD8BBZ (FHVH-T). Twenty-five patients with relapsed MM were treated. The stringent complete response rate (sCR) was 52%. Median progression-free survival (PFS) was 78 weeks. Of 24 evaluable patients, 6 (25%) had a maximum cytokine-release syndrome (CRS) grade of 3; no patients had CRS of greater than grade 3. Most anti-MM activity occurred within 2-4 weeks of FHVH-T infusion as shown by decreases in the rapidly changing MM markers serum free light chains, urine light chains, and bone marrow plasma cells. Blood CAR+ cell levels peaked during the time that MM elimination was occurring, between 7 and 15 days after FHVH-T infusion. C-C chemokine receptor type 7 (CCR7) expression on infusion CD4+ FHVH-T correlated with peak blood FHVH-T levels. Single-cell RNA sequencing revealed a shift toward more differentiated FHVH-T after infusion. Anti-CAR antibody responses were detected in 4 of 12 patients assessed. FHVH-T has powerful, rapid, and durable anti-MM activity.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Immunotherapy, Adoptive , Bone Marrow/metabolism
3.
Cancer Cell ; 41(12): 2154-2165.e5, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38039963

ABSTRACT

Circulating T cells from peripheral blood (PBL) can provide a rich and noninvasive source for antitumor T cells. By single-cell transcriptomic profiling of 36 neoantigen-specific T cell clones from 6 metastatic cancer patients, we report the transcriptional and cell surface signatures of antitumor PBL-derived CD8+ T cells (NeoTCRPBL). Comparison of tumor-infiltrating lymphocyte (TIL)- and PBL-neoantigen-specific T cells revealed that NeoTCRPBL T cells are low in frequency and display less-dysfunctional memory phenotypes relative to their TIL counterparts. Analysis of 100 antitumor TCR clonotypes indicates that most NeoTCRPBL populations target the same neoantigens as TILs. However, NeoTCRPBL TCR repertoire is only partially shared with TIL. Prediction and testing of NeoTCRPBL signature-derived TCRs from PBL of 6 prospective patients demonstrate high enrichment of clonotypes targeting tumor mutations, a viral oncogene, and patient-derived tumor. Thus, the NeoTCRPBL signature provides an alternative source for identifying antitumor T cells from PBL of cancer patients, enabling immune monitoring and immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Prospective Studies , Antigens, Neoplasm , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating , Receptors, Antigen, T-Cell
5.
Cancer Immunol Res ; 10(8): 932-946, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35749374

ABSTRACT

Adoptive cellular therapy (ACT) targeting neoantigens can achieve durable clinical responses in patients with cancer. Most neoantigens arise from patient-specific mutations, requiring highly individualized treatments. To broaden the applicability of ACT targeting neoantigens, we focused on TP53 mutations commonly shared across different cancer types. We performed whole-exome sequencing on 163 patients with metastatic solid cancers, identified 78 who had TP53 missense mutations, and through immunologic screening, identified 21 unique T-cell reactivities. Here, we report a library of 39 T-cell receptors (TCR) targeting TP53 mutations shared among 7.3% of patients with solid tumors. These TCRs recognized tumor cells in a TP53 mutation- and human leucocyte antigen (HLA)-specific manner in vitro and in vivo. Twelve patients with chemorefractory epithelial cancers were treated with ex vivo-expanded autologous tumor-infiltrating lymphocytes (TIL) that were naturally reactive against TP53 mutations. However, limited clinical responses (2 partial responses among 12 patients) were seen. These infusions contained low frequencies of mutant p53-reactive TILs that had exhausted phenotypes and showed poor persistence. We also treated one patient who had chemorefractory breast cancer with ACT comprising autologous peripheral blood lymphocytes transduced with an allogeneic HLA-A*02-restricted TCR specific for p53R175H. The infused cells exhibited an improved immunophenotype and prolonged persistence compared with TIL ACT and the patient experienced an objective tumor regression (-55%) that lasted 6 months. Collectively, these proof-of-concept data suggest that the library of TCRs targeting shared p53 neoantigens should be further evaluated for the treatment of patients with advanced human cancers. See related Spotlight by Klebanoff, p. 919.


Subject(s)
Hematopoietic Stem Cell Transplantation , Neoplasms , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Genes, T-Cell Receptor , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/genetics , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology
6.
Cancer Cell ; 40(5): 479-493.e6, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35452604

ABSTRACT

A common theme across multiple successful immunotherapies for cancer is the recognition of tumor-specific mutations (neoantigens) by T cells. The rapid discovery of such antigen responses could lead to improved therapies through the adoptive transfer of T cells engineered to express neoantigen-reactive T cell receptors (TCRs). Here, through CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) and TCR-seq of non-small cell lung cancer (NSCLC) tumor-infiltrating lymphocytes (TILs), we develop a neoantigen-reactive T cell signature based on clonotype frequency and CD39 protein and CXCL13 mRNA expression. Screening of TCRs selected by the signature allows us to identify neoantigen-reactive TCRs with a success rate of 45% for CD8+ and 66% for CD4+ T cells. Because of the small number of samples analyzed (4 patients), generalizability remains to be tested. However, this approach can enable the quick identification of neoantigen-reactive TCRs and expedite the engineering of personalized neoantigen-reactive T cells for therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Antigens, Neoplasm , CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating , Receptors, Antigen, T-Cell , T-Lymphocytes
7.
Clin Cancer Res ; 28(14): 3042-3052, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35247926

ABSTRACT

PURPOSE: Immune checkpoint blockade (ICB) agents and adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TIL) are prominent immunotherapies used for the treatment of advanced melanoma. Both therapies rely on activation of lymphocytes that target shared tumor antigens or neoantigens. Recent analysis of patients with metastatic melanoma who underwent treatment with TIL ACT at the NCI demonstrated decreased responses in patients previously treated with anti-PD-1 agents. We aimed to find a basis for the difference in response rates between anti-PD-1 naïve and experienced patients. PATIENTS AND METHODS: We examined the tumor mutational burden (TMB) of resected tumors and the repertoire of neoantigens targeted by autologous TIL in a cohort of 112 anti-PD-1 naïve and 69 anti-PD-1 experienced patients. RESULTS: Anti-PD-1 naïve patients were found to possess tumors with higher TMBs (352.0 vs. 213.5, P = 0.005) and received TIL reactive with more neoantigens (2 vs. 1, P = 0.003) compared with anti-PD-1 experienced patients. Among patients treated with TIL ACT, TMB and number of neoantigens identified were higher in ACT responders than ACT nonresponders in both anti-PD-1 naïve and experienced patients. Among patients with comparable TMBs and predicted neoantigen loads, treatment products administered to anti-PD-1 naïve patients were more likely to contain T cells reactive against neoantigens than treatment products for anti-PD-1 experienced patients (2.5 vs. 1, P = 0.02). CONCLUSIONS: These results indicate that decreases in TMB and targeted neoantigens partially account for the difference in response to ACT and that additional factors likely influence responses in these patients. See related commentary by Blass and Ott, p. 2980.


Subject(s)
Melanoma , Neoplasms, Second Primary , Antigens, Neoplasm/immunology , Humans , Immunotherapy, Adoptive , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/pathology
8.
Science ; 375(6583): 877-884, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35113651

ABSTRACT

The accurate identification of antitumor T cell receptors (TCRs) represents a major challenge for the engineering of cell-based cancer immunotherapies. By mapping 55 neoantigen-specific TCR clonotypes (NeoTCRs) from 10 metastatic human tumors to their single-cell transcriptomes, we identified signatures of CD8+ and CD4+ neoantigen-reactive tumor-infiltrating lymphocytes (TILs). Neoantigen-specific TILs exhibited tumor-specific expansion with dysfunctional phenotypes, distinct from blood-emigrant bystanders and regulatory TILs. Prospective prediction and testing of 73 NeoTCR signature-derived clonotypes demonstrated that half of the tested TCRs recognized tumor antigens or autologous tumors. NeoTCR signatures identified TCRs that target driver neoantigens and nonmutated viral or tumor-associated antigens, suggesting a common metastatic TIL exhaustion program. NeoTCR signatures delineate the landscape of TILs across metastatic tumors, enabling successful TCR prediction based purely on TIL transcriptomic states for use in cancer immunotherapy.


Subject(s)
Antigens, Neoplasm/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm Metastasis , Neoplasms/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Transcriptome , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Gene Regulatory Networks , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/genetics , Neoplasms/metabolism , RNA-Seq , Single-Cell Analysis
9.
J Clin Oncol ; 40(16): 1741-1754, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35104158

ABSTRACT

PURPOSE: Metastatic breast cancer (mBrCa) is most often an incurable disease with only modest responses to available immunotherapies. This study investigates the immunogenicity of somatic mutations in breast cancer and explores the therapeutic efficacy in a pilot trial of mutation-reactive tumor-infiltrating lymphocytes (TILs) in patients with metastatic disease. PATIENTS AND METHODS: Forty-two patients with mBrCa refractory to previous lines of treatment underwent surgical resection of a metastatic lesion(s), isolation of TIL cultures, identification of exomic nonsynonymous tumor mutations, and immunologic screening for neoantigen reactivity. Clinically eligible patients with appropriate reactivity were enrolled into one cohort of an ongoing phase II pilot trial of adoptive cell transfer of selected neoantigen-reactive TIL, with a short course of pembrolizumab (ClinicalTrials.gov identifier: NCT01174121). RESULTS: TILs were isolated and grown in culture from the resected lesions of all 42 patients with mBrCa, and a median number of 112 (range: 6-563) nonsynonymous mutations per patient were identified. Twenty-eight of 42 (67%) patients contained TIL that recognized at least one immunogenic somatic mutation (median: 3 neoantigens per patient, range: 1-11), and 13 patients demonstrated robust reactivity appropriate for adoptive transfer. Eight patients remained clinically eligible for treatment, and six patients were enrolled on a protocol of adoptive cell transfer of enriched neoantigen-specific TIL, in combination with pembrolizumab (≤ 4 doses). Objective tumor regression was noted in three patients, including one complete response (now ongoing over 5.5 years) and two partial responses (6 and 10 months). CONCLUSION: Most patients with breast cancer generated a natural immune response targeting the expressed products of their cancer mutations. Adoptive transfer of TIL is a highly personalized experimental option for patients with mBrCa shown to be capable of mediating objective responses in this pilot trial and deserves further study.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Humans , Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating , Mutation , Transplantation, Autologous
10.
Cancer Immunol Res ; 10(3): 303-313, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35013003

ABSTRACT

Cancer immunotherapy can result in lasting tumor regression, but predictive biomarkers of treatment response remain ill-defined. Here, we performed single-cell proteomics, transcriptomics, and genomics on matched untreated and IL2 injected metastases from patients with melanoma. Lesions that completely regressed following intralesional IL2 harbored increased fractions and densities of nonproliferating CD8+ T cells lacking expression of PD-1, LAG-3, and TIM-3 (PD-1-LAG-3-TIM-3-). Untreated lesions from patients who subsequently responded with complete eradication of all tumor cells in all injected lesions (individuals referred to herein as "extreme responders") were characterized by proliferating CD8+ T cells with an exhausted phenotype (PD-1+LAG-3+TIM-3+), stromal B-cell aggregates, and expression of IFNγ and IL2 response genes. Loss of membranous MHC class I expression in tumor cells of untreated lesions was associated with resistance to IL2 therapy. We validated this finding in an independent cohort of metastatic melanoma patients treated with intralesional or systemic IL2. Our study suggests that intact tumor-cell antigen presentation is required for melanoma response to IL2 and describes a multidimensional and spatial approach to develop immuno-oncology biomarker hypotheses using routinely collected clinical biospecimens.


Subject(s)
Interleukin-2 , Melanoma , Hepatitis A Virus Cellular Receptor 2 , Humans , Immunotherapy/methods , Interleukin-2/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Programmed Cell Death 1 Receptor/metabolism
11.
Clin Cancer Res ; 27(19): 5289-5298, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34413159

ABSTRACT

PURPOSE: Adoptive cell transfer (ACT) of autologous tumor-infiltrating lymphocytes (TIL) can mediate durable responses in patients with metastatic melanoma. This retrospective analysis provides long-term follow-up and describes the effect of prior therapy on outcomes after ACT-TIL. PATIENTS AND METHODS: Patients with metastatic melanoma underwent surgical resection of a tumor for generation of TILs and were treated with a lymphodepleting preparative regimen followed by adoptive transfer of TILs and intravenous IL2. Clinical characteristics of enrolled patients and treatment characteristics of TIL infusion products over two decades of ACT were analyzed to identify predictors of objective response. RESULTS: Adoptive transfer of TILs mediated an objective response rate of 56% (108/192) and median melanoma-specific survival of 28.5 months in patients naïve to anti-programmed cell death-1 (PD-1) therapy compared with 24% (8/34) and 11.6 months in patients refractory to anti-PD-1 (aPD-1). Among patients with BRAF V600E/K-mutated disease, prior treatment with targeted molecular therapy was also associated with a decreased response rate (21% vs. 60%) and decreased survival (9.3 vs. 50.7 months) when compared with those patients naïve to targeted therapy. With a median potential follow-up of 89 months, 46 of 48 complete responders in the aPD-1-naïve cohort have ongoing responses after a single treatment and 10-year melanoma-specific survival of 96%. CONCLUSIONS: Patients previously treated with PD-1 or MAPK inhibition are significantly less likely to develop durable objective responses to ACT-TIL. While ACT-TIL is currently being investigated for treatment-refractory patients, it should also be considered as an initial treatment option for eligible patients with metastatic melanoma. See related commentary by Sznol, p. 5156.


Subject(s)
Melanoma , Neoplasms, Second Primary , Adoptive Transfer , Humans , Immunotherapy, Adoptive , Lymphocytes, Tumor-Infiltrating/pathology , Melanoma/pathology , Retrospective Studies
12.
J Immunother Cancer ; 9(7)2021 07.
Article in English | MEDLINE | ID: mdl-34266885

ABSTRACT

The adoptive transfer of naturally occurring T cells that recognize cancer neoantigens has led to durable tumor regressions in select patients with cancer. However, it remains unknown whether such T cells can be isolated from and used to treat patients with glioblastoma, a cancer that is refractory to currently available therapies. To answer this question, we stimulated patient blood-derived memory T cells in vitro using peptides and minigenes that represented point mutations unique to patients' tumors (ie, candidate neoantigens) and then tested their ability to specifically recognize these mutations. In a cohort of five patients with glioblastoma, we found that circulating CD4+ memory T cells from one patient recognized a cancer neoantigen harboring a mutation in the EED gene (EEDH189N) that was unique to that patient's tumor. This finding suggests that neoantigen-reactive T cells could indeed be isolated from patients with glioblastoma, thereby providing a rationale for further efforts to develop neoantigen-directed adoptive T cell therapy for this disease.


Subject(s)
Glioblastoma/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Humans
13.
Clin Breast Cancer ; 21(1): e63-e73, 2021 02.
Article in English | MEDLINE | ID: mdl-32893093

ABSTRACT

Immune cells are present in normal breast tissue and in breast carcinoma. The nature and distribution of the immune cell subtypes in these tissues are reviewed to promote a better understanding of their important role in breast cancer prevention and treatment. We conducted a review of the literature to define the type, location, distribution, and role of immune cells in normal breast tissue and in in situ and invasive breast cancer. Immune cells in normal breast tissue are located predominantly within the epithelial component in breast ductal lobules. Immune cell subtypes representing innate immunity (NK, CD68+, and CD11c+ cells) and adaptive immunity (most commonly CD8+, but CD4+ and CD20+ as well) are present; CD8+ cells are the most common subtype and are primarily effector memory cells. Immune cells may recognize neoantigens and endogenous and exogenous ligands and may serve in chronic inflammation and immunosurveillance. Progression to breast cancer is characterized by increased immune cell infiltrates in tumor parenchyma and stroma, including CD4+ and CD8+ granzyme B+ cytotoxic T cells, B cells, macrophages and dendritic cells. Tumor-infiltrating lymphocytes in breast cancer may serve as prognostic indicators for response to chemotherapy and for survival. Experimental strategies of adoptive transfer of breast tumor-infiltrating lymphocyte may allow regression of metastatic breast cancer and encourage development of innovative T-cell strategies for the immunotherapy of breast cancer. In conclusion, immune cells in breast tissues play an important role throughout breast carcinogenesis. An understanding of these roles has important implications for the prevention and the treatment of breast cancer.


Subject(s)
Breast Neoplasms/immunology , Breast/immunology , Carcinoma, Ductal, Breast/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment/immunology , Breast/pathology , Breast Neoplasms/pathology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Female , Humans
14.
Science ; 370(6522): 1328-1334, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33303615

ABSTRACT

Adoptive T cell therapy (ACT) using ex vivo-expanded autologous tumor-infiltrating lymphocytes (TILs) can mediate complete regression of certain human cancers. The impact of TIL phenotypes on clinical success of TIL-ACT is currently unclear. Using high-dimensional analysis of human ACT products, we identified a memory-progenitor CD39-negative stem-like phenotype (CD39-CD69-) associated with complete cancer regression and TIL persistence and a terminally differentiated CD39-positive state (CD39+CD69+) associated with poor TIL persistence. Most antitumor neoantigen-reactive TILs were found in the differentiated CD39+ state. However, ACT responders retained a pool of CD39- stem-like neoantigen-specific TILs that was lacking in ACT nonresponders. Tumor-reactive stem-like TILs were capable of self-renewal, expansion, persistence, and superior antitumor response in vivo. These data suggest that TIL subsets mediating ACT response are distinct from TIL subsets enriched for antitumor reactivity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/transplantation , Melanoma/therapy , Skin Neoplasms/therapy , Animals , Antigens, CD/analysis , Antigens, Differentiation, T-Lymphocyte/analysis , Apyrase/analysis , CD8-Positive T-Lymphocytes/chemistry , Female , Humans , Lectins, C-Type/analysis , Melanoma/immunology , Mice , Mice, Mutant Strains , Skin Neoplasms/immunology
15.
J Immunother Cancer ; 8(2)2020 11.
Article in English | MEDLINE | ID: mdl-33199512

ABSTRACT

Immunotherapy is now a cornerstone for cancer treatment, and much attention has been placed on the identification of prognostic and predictive biomarkers. The success of biomarker development is dependent on accurate and timely collection of biospecimens and high-quality processing, storage and shipping. Tumors are also increasingly used as source material for the generation of therapeutic T cells. There have been few guidelines or consensus statements on how to optimally collect and manage biospecimens and source material being used for immunotherapy and related research. The Society for Immunotherapy of Cancer Surgery Committee has brought together surgical experts from multiple subspecialty disciplines to identify best practices and to provide consensus on how best to access and manage specific tissues for immuno-oncology treatments and clinical investigation. In addition, the committee recommends early integration of surgeons and other interventional physicians with expertise in biospecimen collection, especially in clinical trials, to optimize the quality of tissue and the validity of correlative clinical studies in cancer immunotherapy.


Subject(s)
Immunotherapy/methods , Medical Oncology/standards , Tissue and Organ Procurement/methods , Clinical Trials as Topic , Humans
16.
Clin Colorectal Cancer ; 19(4): 263-269, 2020 12.
Article in English | MEDLINE | ID: mdl-33012679

ABSTRACT

BACKGROUND: Current literature suggests that brain metastasis is an infrequent occurrence in metastatic colorectal cancer. Outside of rare autopsy studies, these retrospective reports describe the incidence of symptomatic brain metastasis and therefore lack a description of the incidence in asymptomatic patients. With improved survival and a lack of routine brain imaging, the true incidence of brain metastasis among patients with metastatic colorectal cancer is likely under-recognized. At our research institution, protocol criteria require brain imaging regardless of neurologic symptoms. Therefore, we aim to describe the incidence of asymptomatic brain metastases in patients with metastatic colorectal cancer. PATIENTS AND METHODS: This study included patients with metastatic colorectal cancer enrolled onto a clinical trial screening protocol at the National Cancer Institute that underwent brain imaging (n = 171) between 2010 and 2019. RESULTS: The median age of patients at initial colorectal cancer diagnosis was 48.1 years. Most had stage IV disease with synchronous metastases. Twenty-five (14.6%) patients were identified with brain metastases, of which 19 (76%) were asymptomatic. Those with asymptomatic lesions were more likely to have presented with synchronous metastases, have a shorter time from primary diagnosis to development of metastatic disease, and have smaller brain metastases. CONCLUSION: We identified a high number of asymptomatic brain metastasis and subsequently a higher cumulative incidence of brain metastases in patients with metastatic colorectal cancer than historical reports would suggest. This may represent a heretofore unknown aspect of the natural course of disease now being exposed owing to an increasing life expectancy of these patients and could play a pivotal role in therapeutic decisions.


Subject(s)
Asymptomatic Diseases/epidemiology , Brain Neoplasms/epidemiology , Colorectal Neoplasms/pathology , Adult , Aged , Brain/diagnostic imaging , Brain Neoplasms/diagnosis , Brain Neoplasms/secondary , Colorectal Neoplasms/diagnosis , Female , Humans , Incidence , Male , Middle Aged , Neoplasm Staging , Retrospective Studies
17.
J Clin Oncol ; 38(32): 3805-3815, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33021872

ABSTRACT

PURPOSE: Anti-CD19 chimeric antigen receptors (CARs) are artificial fusion proteins that cause CD19-specific T-cell activation. Durability of remissions and incidence of long-term adverse events are critical factors determining the utility of anti-CD19 CAR T-cell therapy, but long-term follow-up of patients treated with anti-CD19 CAR T cells is limited. This work provides the longest follow-up of patients in remission after anti-CD19 CAR T-cell therapy. METHODS: Between 2009 and 2015, we administered 46 CAR T-cell treatments to 43 patients (ClinicalTrials.gov identifier: NCT00924326). Patients had relapsed B-cell malignancies of the following types: diffuse large B-cell lymphoma or primary mediastinal B-cell lymphoma (DLBCL/PMBCL; n = 28), low-grade B-cell lymphoma (n = 8), or chronic lymphocytic leukemia (CLL; n = 7). This report focuses on long-term outcomes of these patients. The CAR used was FMC63-28Z; axicabtagene ciloleucel uses the same CAR. Cyclophosphamide plus fludarabine conditioning chemotherapy was administered before CAR T cells. RESULTS: The percentages of CAR T-cell treatments resulting in a > 3-year duration of response (DOR) were 51% (95% CI, 35% to 67%) for all evaluable treatments, 48% (95% CI, 28% to 69%) for DLBCL/PMBCL, 63% (95% CI, 25% to 92%) for low-grade lymphoma, and 50% (95% CI, 16% to 84%) for CLL. The median event-free survival of all 45 evaluable treatments was 55 months. Long-term adverse effects were rare, except for B-cell depletion and hypogammaglobulinemia. Median peak blood CAR-positive cell levels were higher among patients with a DOR of > 3 years (98/µL; range, 9-1,217/µL) than among patients with a DOR of < 3 years (18/µL; range, 0-308/µL, P = .0051). CONCLUSION: Complete remissions of a variety of B-cell malignancies lasting ≥ 3 years occurred after 51% of evaluable anti-CD19 CAR T-cell treatments. Remissions of up to 9 years are ongoing. Late adverse events were rare.


Subject(s)
Antigens, CD19/immunology , Immunotherapy, Adoptive/methods , Lymphoma, B-Cell/therapy , Adult , Aged , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Female , Follow-Up Studies , Humans , Immunoglobulins/immunology , Immunotherapy, Adoptive/adverse effects , Lymphoma, B-Cell/blood , Lymphoma, B-Cell/immunology , Male , Middle Aged , Receptors, Chimeric Antigen/blood , Receptors, Chimeric Antigen/immunology , Survival Rate
18.
J Clin Invest ; 130(11): 5976-5988, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33016924

ABSTRACT

BACKGROUNDTherapeutic vaccinations against cancer have mainly targeted differentiation antigens, cancer-testis antigens, and overexpressed antigens and have thus far resulted in little clinical benefit. Studies conducted by multiple groups have demonstrated that T cells recognizing neoantigens are present in most cancers and offer a specific and highly immunogenic target for personalized vaccination.METHODSWe recently developed a process using tumor-infiltrating lymphocytes to identify the specific immunogenic mutations expressed in patients' tumors. Here, validated, defined neoantigens, predicted neoepitopes, and mutations of driver genes were concatenated into a single mRNA construct to vaccinate patients with metastatic gastrointestinal cancer.RESULTSThe vaccine was safe and elicited mutation-specific T cell responses against predicted neoepitopes not detected before vaccination. Furthermore, we were able to isolate and verify T cell receptors targeting KRASG12D mutation. We observed no objective clinical responses in the 4 patients treated in this trial.CONCLUSIONThis vaccine was safe, and potential future combination of such vaccines with checkpoint inhibitors or adoptive T cell therapy should be evaluated for possible clinical benefit in patients with common epithelial cancers.TRIAL REGISTRATIONPhase I/II protocol (NCT03480152) was approved by the IRB committee of the NIH and the FDA.FUNDINGCenter for Clinical Research, NCI, NIH.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Gastrointestinal Neoplasms , Immunity, Cellular , Mutation, Missense , Proto-Oncogene Proteins p21(ras) , RNA, Messenger , T-Lymphocytes/immunology , Amino Acid Substitution , Antigens, Neoplasm/administration & dosage , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Female , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/immunology , Gastrointestinal Neoplasms/therapy , Humans , Male , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/immunology , RNA, Messenger/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/immunology
19.
Am Soc Clin Oncol Educ Book ; 40: 1-12, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32243202

ABSTRACT

Advances in the understanding of biology and therapy of melanoma have occurred at an astonishing pace over the past approximately 15 years, and successful melanoma therapy has led the way for similar advances in many other solid tumors that are continuing to improve outcomes for all patients with cancer. Although the 2018 Nobel Prize was awarded to two investigators who discovered that therapeutic targeting of immune checkpoints held the key to major patient benefits, there are many additional immunotherapeutic strategies that warrant further study and discussion at scientific and medical meetings. This article provides the newest information on three areas of immunotherapy that have been successfully applied to melanoma and continue to pave the way for new developments: cytokines, adoptive cell therapies (ADTs), and intratumoral injection of immunomodulatory agents.


Subject(s)
Immunotherapy/methods , Melanoma/therapy , Antineoplastic Agents, Immunological/therapeutic use , Cell Transplantation , Clinical Trials as Topic , Cytokines/therapeutic use , Humans , Immunotherapy, Adoptive , Survival Analysis , Treatment Outcome
20.
Cancer Discov ; 9(8): 1022-1035, 2019 08.
Article in English | MEDLINE | ID: mdl-31164343

ABSTRACT

Immunotherapies can mediate regression of human tumors with high mutation rates, but responses are rarely observed in patients with common epithelial cancers. This raises the question of whether patients with these common cancers harbor T lymphocytes that recognize mutant proteins expressed by autologous tumors that may represent ideal targets for immunotherapy. Using high-throughput immunologic screening of mutant gene products identified via whole-exome sequencing, we identified neoantigen-reactive tumor-infiltrating lymphocytes (TIL) from 62 of 75 (83%) patients with common gastrointestinal cancers. In total, 124 neoantigen-reactive TIL populations were identified, and all but one of the neoantigenic determinants were unique. The results of in vitro T-cell recognition assays demonstrated that 1.6% of the gene products encoded by somatic nonsynonymous mutations were immunogenic. These findings demonstrate that the majority of common epithelial cancers elicit immune recognition and open possibilities for cell-based immunotherapies for patients bearing these cancers. SIGNIFICANCE: TILs cultured from 62 of 75 (83%) patients with gastrointestinal cancers recognized neoantigens encoded by 1.6% of somatic mutations expressed by autologous tumor cells, and 99% of the neoantigenic determinants appeared to be unique and not shared between patients.This article is highlighted in the In This Issue feature, p. 983.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Disease Susceptibility , Gastrointestinal Neoplasms/etiology , Gastrointestinal Neoplasms/metabolism , Mutation , Biomarkers, Tumor , Gastrointestinal Neoplasms/pathology , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...