Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metallomics ; 15(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36702557

ABSTRACT

Iron regulatory proteins (IRPs) control the translation of animal cell mRNAs encoding proteins with diverse roles. This includes the iron storage protein ferritin and the tricarboxylic cycle (TCA) enzyme mitochondrial aconitase (ACO2) through iron-dependent binding of IRP to the iron responsive element (IRE) in the 5' untranslated region (UTR). To further elucidate the mechanisms allowing IRPs to control translation of 5' IRE-containing mRNA differentially, we focused on Aco2 mRNA, which is weakly controlled versus the ferritins. Rat liver contains two classes of Aco2 mRNAs, with and without an IRE, due to alterations in the transcription start site. Structural analysis showed that the Aco2 IRE adopts the canonical IRE structure but lacks the dynamic internal loop/bulge five base pairs 5' of the CAGUG(U/C) terminal loop in the ferritin IREs. Unlike ferritin mRNAs, the Aco2 IRE lacks an extensive base-paired flanking region. Using a full-length Aco2 mRNA expression construct, iron controlled ACO2 expression in an IRE-dependent and IRE-independent manner, the latter of which was eliminated with the ACO23C3S mutant that cannot bind the FeS cluster. Iron regulation of ACO23C3S encoded by the full-length mRNA was completely IRE-dependent. Replacement of the Aco23C3S 5' UTR with the Fth1 IRE with base-paired flanking sequences substantially improved iron responsiveness, as did fusing of the Fth1 base-paired flanking sequences to the native IRE in the Aco3C3S construct. Our studies further define the mechanisms underlying the IRP-dependent translational regulatory hierarchy and reveal that Aco2 mRNA species lacking the IRE contribute to the expression of this TCA cycle enzyme.


Subject(s)
Iron , RNA-Binding Proteins , Animals , Rats , Iron/metabolism , RNA-Binding Proteins/chemistry , Protein Biosynthesis , Ferritins/metabolism , Iron-Regulatory Proteins/genetics , Iron-Regulatory Proteins/metabolism , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nucleic Acid Conformation
2.
RNA ; 16(1): 154-69, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19939970

ABSTRACT

Iron regulatory proteins (IRPs) are iron-regulated RNA binding proteins that, along with iron-responsive elements (IREs), control the translation of a diverse set of mRNA with 5' IRE. Dysregulation of IRP action causes disease with etiology that may reflect differential control of IRE-containing mRNA. IREs are defined by a conserved stem-loop structure including a midstem bulge at C8 and a terminal CAGUGH sequence that forms an AGU pseudo-triloop and N19 bulge. C8 and the pseudo-triloop nucleotides make the majority of the 22 identified bonds with IRP1. We show that IRP1 binds 5' IREs in a hierarchy extending over a ninefold range of affinities that encompasses changes in IRE binding affinity observed with human L-ferritin IRE mutants. The limits of this IRE binding hierarchy are predicted to arise due to small differences in binding energy (e.g., equivalent to one H-bond). We demonstrate that multiple regions of the IRE stem not predicted to contact IRP1 help establish the binding hierarchy with the sequence and structure of the C8 region displaying a major role. In contrast, base-pairing and stacking in the upper stem region proximal to the terminal loop had a minor role. Unexpectedly, an N20 bulge compensated for the lack of an N19 bulge, suggesting the existence of novel IREs. Taken together, we suggest that a regulatory binding hierarchy is established through the impact of the IRE stem on the strength, not the number, of bonds between C8 or pseudo-triloop nucleotides and IRP1 or through their impact on an induced fit mechanism of binding.


Subject(s)
Iron-Regulatory Proteins/metabolism , Nucleic Acid Conformation , Response Elements/genetics , Response Elements/physiology , Animals , Apoferritins/metabolism , Base Sequence/physiology , Humans , Iron Regulatory Protein 1/metabolism , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/physiology , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Binding , RNA-Binding Proteins/metabolism , Rabbits , Saccharomyces cerevisiae , Substrate Specificity/genetics
3.
J Biol Chem ; 284(19): 12701-9, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19269970

ABSTRACT

Iron-sulfur cluster-dependent interconversion of iron regulatory protein 1 (IRP1) between its RNA binding and cytosolic aconitase (c-acon) forms controls vertebrate iron homeostasis. Cluster removal from c-acon is thought to include oxidative demetallation as a required step, but little else is understood about the process of conversion to IRP1. In comparison with c-acon(WT), Ser(138) phosphomimetic mutants of c-acon contain an unstable [4Fe-4S] cluster and were used as tools to further define the pathway(s) of iron-sulfur cluster disassembly. Under anaerobic conditions cluster insertion into purified IRP1(S138E) and cluster loss on treatment with NO regulated aconitase and RNA binding activity over a similar range as observed for IRP1(WT). However, activation of RNA binding of c-acon(S138E) was an order of magnitude more sensitive to NO than for c-acon(WT). Consistent with this, an altered set point between RNA-binding and aconitase forms was observed for IRP1(S138E) when expressed in HEK cells. Active c-acon(S138E) could only accumulate under hypoxic conditions, suggesting enhanced cluster disassembly in normoxia. Cluster disassembly mechanisms were further probed by determining the impact of iron chelation on acon activity. Unexpectedly EDTA rapidly inhibited c-acon(S138E) activity without affecting c-acon(WT). Additional chelator experiments suggested that cluster loss can be initiated in c-acon(S138E) through a spontaneous nonoxidative demetallation process. Taken together, our results support a model wherein Ser(138) phosphorylation sensitizes IRP1/c-acon to decreased iron availability by allowing the [4Fe-4S](2+) cluster to cycle with [3Fe-4S](0) in the absence of cluster perturbants, indicating that regulation can be initiated merely by changes in iron availability.


Subject(s)
Aconitate Hydratase/metabolism , Iron Regulatory Protein 1/metabolism , Iron-Sulfur Proteins/metabolism , Iron/metabolism , Serine/metabolism , Sulfur/metabolism , Cytosol/enzymology , Electron Spin Resonance Spectroscopy , Humans , Hypoxia , Iron Chelating Agents , Iron Regulatory Protein 1/genetics , Iron-Sulfur Proteins/genetics , Kidney/cytology , Kidney/metabolism , Mutagenesis, Site-Directed , Mutation , Nitric Oxide/metabolism , Phosphorylation , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...