Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 81(12): 125102, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21198046

ABSTRACT

Because many types of living cells are sensitive to applied strain, different in vitro models have been designed to elucidate the cellular and subcellular processes that respond to mechanical deformation at both the cell and tissue level. Our focus was to improve upon an already established strain system to make it capable of independently monitoring the deflection and applied pressure delivered to specific wells of a commercially available, deformable multiwell culture plate. To accomplish this, we devised a custom frame that was capable of mounting deformable 6 or 24 well plates, a pressurization system that could load wells within the plates, and a camera-based imaging system which was capable of capturing strain responses at a sufficiently high frame rate. The system used a user defined program constructed in Labview(®) to trigger plate pressurization while simultaneously allowing the deflection of the silicone elastomeric plate bottoms to be imaged in near real time. With this system, up to six wells could be pulsed simultaneously using compressed air or nitrogen. Digital image capture allowed near-real time monitoring of applied strain, strain rate, and the cell loading profiles. Although our ultimate goal is to determine how different strain rates applied to neurons modulates their intrinsic biochemical cascades, the same platform technology could be readily applied to other systems. Combining commercially available, deformable multiwell plates with a simple instrument having the monitoring capabilities described here should permit near real time calculations of stretch-induced membrane strain in multiple wells in real time for a wide variety of applications, including high throughput drug screening.


Subject(s)
Pressure , Stress, Mechanical , Systems Integration , Biomechanical Phenomena , Cell Membrane , Cell Survival , Equipment Design , Neurons/cytology , Reproducibility of Results , Time Factors
2.
J Gen Physiol ; 120(3): 307-22, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12198088

ABSTRACT

A novel calcium-dependent potassium current (K(slow)) that slowly activates in response to a simulated islet burst was identified recently in mouse pancreatic beta-cells (Göpel, S.O., T. Kanno, S. Barg, L. Eliasson, J. Galvanovskis, E. Renström, and P. Rorsman. 1999. J. Gen. Physiol. 114:759-769). K(slow) activation may help terminate the cyclic bursts of Ca(2+)-dependent action potentials that drive Ca(2+) influx and insulin secretion in beta-cells. Here, we report that when [Ca(2+)](i) handling was disrupted by blocking Ca(2+) uptake into the ER with two separate agents reported to block the sarco/endoplasmic calcium ATPase (SERCA), thapsigargin (1-5 microM) or insulin (200 nM), K(slow) was transiently potentiated and then inhibited. K(slow) amplitude could also be inhibited by increasing extracellular glucose concentration from 5 to 10 mM. The biphasic modulation of K(slow) by SERCA blockers could not be explained by a minimal mathematical model in which [Ca(2+)](i) is divided between two compartments, the cytosol and the ER, and K(slow) activation mirrors changes in cytosolic calcium induced by the burst protocol. However, the experimental findings were reproduced by a model in which K(slow) activation is mediated by a localized pool of [Ca(2+)] in a subspace located between the ER and the plasma membrane. In this model, the subspace [Ca(2+)] follows changes in cytosolic [Ca(2+)] but with a gradient that reflects Ca(2+) efflux from the ER. Slow modulation of this gradient as the ER empties and fills may enhance the role of K(slow) and [Ca(2+)] handling in influencing beta-cell electrical activity and insulin secretion.


Subject(s)
Calcium/metabolism , Cytoplasm/metabolism , Islets of Langerhans/metabolism , Potassium Channels, Calcium-Activated/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Cells, Cultured , Cytoplasm/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Islets of Langerhans/drug effects , Male , Mice
3.
Diabetes ; 50(10): 2192-8, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11574397

ABSTRACT

Insulin is known to regulate pancreatic beta-cell function through the activation of cell surface insulin receptors, phosphorylation of insulin receptor substrate (IRS)-1 and -2, and activation of phosphatidylinositol (PI) 3-kinase. However, an acute effect of insulin in modulating beta-cell electrical activity and its underlying ionic currents has not been reported. Using the perforated patch clamp technique, we found that insulin (1-600 nmol/l) but not IGF-1 (100 nmol/l) reversibly hyperpolarized single mouse beta-cells and inhibited their electrical activity. The dose-response relationship for insulin yielded a maximal change (mean +/- SE) in membrane potential of -13.6 +/- 2.0 mV (P < 0.001) and a 50% effective dose of 25.9 +/- 0.1 nmol/l (n = 63). Exposing patched beta-cells within intact islets to 200 nmol/l insulin produced similar results, hyperpolarizing islets from -47.7 +/- 3.3 to -65.6 +/- 3.7 mV (P < 0.0001, n = 11). In single cells, insulin-induced hyperpolarization was associated with a threefold increase in whole-cell conductance from 0.6 +/- 0.1 to 1.7 +/- 0.2 nS (P < 0.001, n = 10) and a shift in the current reversal potential from -25.7 +/- 2.5 to -63.7 +/- 1.0 mV (P < 0.001 vs. control, n = 9; calculated K(+) equilibrium potential = -90 mV). The effects of insulin were reversed by tolbutamide, which decreased cell conductance to 0.5 +/- 0.1 nS and shifted the current reversal potential to -25.2 +/- 2.3 mV. Insulin-induced beta-cell hyperpolarization was sufficient to abolish intracellular calcium concentration ([Ca(2+)](i)) oscillations measured in pancreatic islets exposed to 10 mmol/l glucose. The application of 100 nmol/l wortmannin to inactivate PI 3-kinase, a key enzyme in insulin signaling, was found to reverse the effects of 100 nmol/l insulin. In cell-attached patches, single ATP-sensitive K(+) (K(ATP)) channels were activated by bath-applied insulin and subsequently inhibited by wortmannin. Our data thus demonstrate that insulin activates the K(ATP) channels of single mouse pancreatic beta-cells and islets, resulting in membrane hyperpolarization, an inhibition of electrical activity, and the abolition of [Ca(2+)](i) oscillations. We thus propose that locally released insulin might serve as a negative feedback signal within the islet under physiological conditions.


Subject(s)
Adenosine Triphosphate/physiology , Insulin/pharmacology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Phosphatidylinositol 3-Kinases/physiology , Potassium Channels/drug effects , Potassium Channels/metabolism , Androstadienes/pharmacology , Animals , Calcium/metabolism , Culture Techniques , Electric Conductivity , Electrophysiology , Insulin-Like Growth Factor I/pharmacology , Intracellular Membranes/metabolism , Islets of Langerhans/physiology , Male , Mice , Oscillometry , Osmolar Concentration , Potassium/physiology , Potassium Channel Blockers , Wortmannin
4.
Diabetes ; 50(5): 992-1003, 2001 May.
Article in English | MEDLINE | ID: mdl-11334443

ABSTRACT

Insulin-secreting pancreatic islet beta-cells possess anion-permeable Cl- channels (I(Cl,islet)) that are swelling-activated, but the role of these channels in the cells is unclear. The Cl- channel blockers 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and niflumic acid were evaluated for their ability to inhibit I(Cl,islet) in clonal beta-cells (HIT cells). Both drugs blocked the channel, but the blockade due to niflumic acid was less voltage-dependent than the blockade due to DIDS. HIT cell volume initially increased in hypotonic solution and was followed by a regulatory volume decrease (RVD). The addition of niflumic acid and, to a lesser extent, DIDS to the hypotonic solution potentiated swelling and blocked the RVD. In isotonic solution, niflumic acid produced swelling, suggesting that islet Cl- channels are activated under basal conditions. The channel blockers glyburide, gadolinium, or tetraethylammonium-Cl did not alter hypotonic-induced swelling or volume regulation. The Na/K/2Cl transport blocker furosemide produced cell shrinkage in isotonic solution and blocked cell swelling normally induced by hypotonic solution. Perifused HIT cells secreted insulin when challenged with hypotonic solutions. However, this could not be completely attributed to I(Cl,islet)-mediated depolarization, because secretion persisted even when Cl- channels were fully blocked. To test whether blocker-resistant secretion occurred via a distal pathway, distal secretion was isolated using 50 mmol/l potassium and diazoxide. Under these conditions, glucose-dependent secretion was blunted, but hypotonically induced secretion persisted, even with Cl- channel blockers present. These results suggest that beta-cell swelling stimulates insulin secretion primarily via a distal I(Cl,islet)-independent mechanism, as has been proposed for K(ATP)-independent glucose- and sulfonylurea-stimulated insulin secretion. Reverse transcriptase-polymerase chain reaction of HIT cell mRNA identified a CLC-3 transcript in HIT cells. In other systems, CLC-3 is believed to mediate swelling-induced outwardly rectifying Cl- channels. This suggests that the proximal effects of swelling to regulate cell volume may be mediated by CLC-3 or a closely related Cl- channel.


Subject(s)
4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Cell Size/physiology , Chloride Channels/physiology , Insulin/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/physiology , Niflumic Acid/pharmacology , Amino Acid Sequence , Animals , Base Sequence , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Chloride Channels/antagonists & inhibitors , Chloride Channels/genetics , Clone Cells , Cricetinae , Diazoxide/pharmacology , Furosemide/pharmacology , Gadolinium/pharmacology , Glucose/pharmacology , Glyburide/pharmacology , Homeostasis , Hypotonic Solutions , Insulin Secretion , Islets of Langerhans/drug effects , Kinetics , Molecular Sequence Data , Sodium-Potassium-Chloride Symporters , Tetraethylammonium/pharmacology
5.
Acta Neurochir Suppl ; 76: 379-83, 2000.
Article in English | MEDLINE | ID: mdl-11450049

ABSTRACT

UNLABELLED: Although astrocytic swelling is likely to mediate brain edema and high ICP after traumatic brain injury, the mechanism is not understood. We employed whole cell patch clamp electrophysiology and a stretch injury model to understand whether volume regulating ion currents are altered following cell injury. Mixed rat astrocytes and neurons were co-cultured on deformable silastic membranes. Mild-moderate cell injury was produced using a timed pulse of pressurized air to deform the silastic substrates by 6.5 mm. Then, ion currents were recorded with patch clamp methods. Cells were held at -65 mV and were stepped to +10 mV to monitor current changes. RESULTS: In unstretched astrocytes, small amplitude currents were obtained under isotonic conditions. Hypotonic solution activated an outwardly-rectifying current which reversed near -40 mV. This current resembled a previously reported anion current whose activation may restore cell volume by mediating a net solute efflux. In contrast, stretch injured cells exhibited a large amplitude, nonrectifying current. This current was not due to non-specific ionic leakage, since it was fully suppressed by the cation channel blocker gadolinium. Activation of novel stretch-activated cation currents may exacerbate cell swelling in injured astrocytes. Stretch injured astrocytes thus express a dysfunctional cation current as opposed to an osmoregulatory anion current. This mechanism, if present in vivo, may contribute to the cytotoxic swelling seen after traumatic brain injury.


Subject(s)
Astrocytes/physiology , Brain Edema/physiopathology , Cerebral Cortex/injuries , Ion Channels/physiology , Water-Electrolyte Balance/physiology , Animals , Cells, Cultured , Cerebral Cortex/physiopathology , Intracellular Fluid/metabolism , Rats
6.
J Neurosci ; 19(17): 7367-74, 1999 Sep 01.
Article in English | MEDLINE | ID: mdl-10460243

ABSTRACT

Overactivation of ionotropic glutamate receptors has been implicated in the pathophysiology of traumatic brain injury. Using an in vitro cell injury model, we examined the effects of stretch-induced traumatic injury on the AMPA subtype of ionotropic glutamate receptors in cultured neonatal cortical neurons. Recordings made using the whole-cell patch-clamp technique revealed that a subpopulation of injured neurons exhibited an increased current in response to AMPA. The current-voltage relationship of these injured neurons showed an increased slope conductance but no change in reversal potential compared with uninjured neurons. Additionally, the EC(50) values of uninjured and injured neurons were nearly identical. Thus, current potentiation was not caused by changes in the voltage-dependence, ion selectivity, or apparent agonist affinity of the AMPA channel. AMPA-elicited current could also be fully inhibited by the application of selective AMPA receptor antagonists, thereby excluding the possibility that current potentiation in injured neurons was caused by the activation of other, nondesensitizing receptors. The difference in current densities between control and injured neurons was abolished when AMPA receptor desensitization was inhibited by the coapplication of AMPA and cyclothiazide or by the use of kainate as an agonist, suggesting that mechanical injury alters AMPA receptor desensitization. Reduction of AMPA receptor desensitization after brain injury would be expected to further exacerbate the effects of increased postinjury extracellular glutamate and contribute to trauma-related cell loss and dysfunctional synaptic information processing.


Subject(s)
Brain Injuries/physiopathology , Neocortex/physiology , Neurons/physiology , Pyramidal Cells/physiology , Receptors, AMPA/physiology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , 2-Amino-5-phosphonovalerate/pharmacology , Animals , Animals, Newborn , Benzodiazepines/pharmacology , Cell Culture Techniques/methods , Cells, Cultured , Excitatory Amino Acid Antagonists/pharmacology , Membrane Potentials/drug effects , Models, Neurological , Neocortex/cytology , Neurons/cytology , Neurons/drug effects , Patch-Clamp Techniques , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Rats , Rats, Sprague-Dawley , Receptors, AMPA/antagonists & inhibitors , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...