Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Nutr Food Res ; 68(4): e2300239, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212250

ABSTRACT

SCOPE: Tomato consumption is associated with many health benefits including lowered risk for developing certain cancers. It is hypothesized that tomato phytochemicals are transported to the liver and other tissues where they alter gene expression in ways that lead to favorable health outcomes. However, the effects of tomato consumption on mammalian liver gene expression and chemical profile are not well defined. METHODS AND RESULTS: The study hypothesizes that tomato consumption would alter mouse liver transcriptomes and metabolomes compared to a control diet. C57BL/6J mice (n = 11-12/group) are fed a macronutrient matched diet containing either 10% red tomato, 10% tangerine tomato, or no tomato powder for 6 weeks after weaning. RNA-Seq followed by gene set enrichment analyses indicates that tomato type and consumption, in general, altered expression of phase I and II xenobiotic metabolism genes. Untargeted metabolomics experiments reveal distinct clustering between control and tomato fed animals. Nineteen molecular formulas (representing 75 chemical features) are identified or tentatively identified as steroidal alkaloids and isomers of their phase I and II metabolites; many of which are reported for the first time in mammals. CONCLUSION: These data together suggest tomato consumption may impart benefits partly through enhancing detoxification potential.


Subject(s)
Alkaloids , Solanum lycopersicum , Mice , Animals , Xenobiotics/metabolism , Mice, Inbred C57BL , Liver/metabolism , Metabolomics/methods , Gene Expression Profiling , Alkaloids/pharmacology , Steroids/metabolism , Mammals
2.
Int J Mol Sci ; 24(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36982942

ABSTRACT

Modulation of the gut microbiota is a trending strategy to improve health. While butyrate has been identified as a key health-related microbial metabolite, managing its supply to the host remains challenging. Therefore, this study investigated the potential to manage butyrate supply via tributyrin oil supplementation (TB; glycerol with three butyrate molecules) using the ex vivo SIFR® (Systemic Intestinal Fermentation Research) technology, a highly reproducible, in vivo predictive gut model that accurately preserves in vivo-derived microbiota and enables addressing interpersonal differences. Dosing 1 g TB/L significantly increased butyrate with 4.1 (±0.3) mM, corresponding with 83 ± 6% of the theoretical butyrate content of TB. Interestingly, co-administration of Limosilactobacillus reuteri ATCC 53608 (REU) and Lacticaseibacillus rhamnosus ATCC 53103 (LGG) markedly enhanced butyrate to levels that exceeded the theoretical butyrate content of TB (138 ± 11% for REU; 126 ± 8% for LGG). Both TB + REU and TB + LGG stimulated Coprococcus catus, a lactate-utilizing, butyrate-producing species. The stimulation of C. catus with TB + REU was remarkably consistent across the six human adults tested. It is hypothesized that LGG and REU ferment the glycerol backbone of TB to produce lactate, a precursor of butyrate. TB + REU also significantly stimulated the butyrate-producing Eubacterium rectale and Gemmiger formicilis and promoted microbial diversity. The more potent effects of REU could be due to its ability to convert glycerol to reuterin, an antimicrobial compound. Overall, both the direct butyrate release from TB and the additional butyrate production via REU/LGG-mediated cross-feeding were highly consistent. This contrasts with the large interpersonal differences in butyrate production that are often observed upon prebiotic treatment. Combining TB with LGG and especially REU is thus a promising strategy to consistently supply butyrate to the host, potentially resulting in more predictable health benefits.


Subject(s)
Lacticaseibacillus rhamnosus , Limosilactobacillus reuteri , Probiotics , Adult , Humans , Lacticaseibacillus , Butyrates/metabolism , Glycerol/metabolism
3.
Microbiol Spectr ; 10(6): e0250622, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36346230

ABSTRACT

Diets rich in fruits and vegetables have been shown to exert positive effects on the gut microbiome. However, little is known about the specific effect of individual fruits or vegetables on gut microbe profiles. This study aims to elucidate the effects of tomato consumption on the gut microbiome, as tomatoes account for 22% of vegetable consumption in Western diets, and their consumption has been associated with positive health outcomes. Using piglets as a physiologically relevant model of human metabolism, 20 animals were assigned to either a control or a tomato powder-supplemented diet (both macronutrient matched and isocaloric) for 14 days. The microbiome was sampled rectally at three time points: day 0 (baseline), day 7 (midpoint), and day 14 (end of study). DNA was sequenced using shotgun metagenomics, and reads were annotated using MG-RAST. There were no differences in body weight or feed intake between our two treatment groups. There was a microbial shift which included a higher ratio of Bacteroidota to Bacillota (formerly known as Bacteroidetes and Firmicutes, respectively) and higher alpha-diversity in tomato-fed animals, indicating a shift to a more desirable phenotype. Analyses at both the phylum and genus levels showed global microbiome profile changes (permutational multivariate analysis of variance [PERMANOVA], P ≤ 0.05) over time but not with tomato consumption. These data suggest that short-term tomato consumption can beneficially influence the gut microbial profile, warranting further investigation in humans. IMPORTANCE The composition of the microorganisms in the gut is a contributor to overall health, prompting the development of strategies to alter the microbiome composition. Studies have investigated the role of the diet on the microbiome, as it is a major modifiable risk factor contributing to health; however, little is known about the causal effects of consumption of specific foods on the gut microbiota. A more complete understanding of how individual foods impact the microbiome will enable more evidence-based dietary recommendations for long-term health. Tomatoes are of interest as the most consumed nonstarchy vegetable and a common source of nutrients and phytochemicals across the world. This study aimed to elucidate the effect of short-term tomato consumption on the microbiome, using piglets as a physiologically relevant model to humans. We found that tomato consumption can positively affect the gut microbial profile, which warrants further investigation in humans.


Subject(s)
Gastrointestinal Microbiome , Solanum lycopersicum , Humans , Animals , Swine , Gastrointestinal Microbiome/genetics , Feces , Diet , Bacteroidetes , Firmicutes , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL
...