Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 17950, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31784552

ABSTRACT

Biological control of bacteria with bacteriophages is a viable alternative to antibiotics. To be successful, biological control bacteriophages must be stable when exposed to the environment. Stabilization can be achieved through incorporation of bacteriophages into polymers and stabilizers that will be coated onto the seed. For this study, bacteriophages against Clavibacter michiganensis subsp. nebraskensis (Cmn), the causal agent of Goss's wilt, were incorporated into polyvinyl polymers with alcohol, ether and pyrrolidone functional groups and coated onto maize (Zea mays L.) seeds. The objectives of this study were to evaluate polymers and stabilizers that can protect Clavibacter michiganensis subsp. nebraskensis (CN8) bacteriophages against dehydration during storage. Bacteriophages stability when coated on seed depended on the glass transition temperature (Tg), functional groups of the polymer, and the presence of stabilizers such as sugars and proteins. Polyvinyl alcohol (PVOH) provided the greatest stability for CN8 bacteriophages on seed when coatings did not contain a stabilizer. A possible reason for the greater stability of this coating is having a glass transition temperature (Tg) very close to ambient temperature. PVOH combined with whey protein isolate (WPI) maintained CN8 bacteriophage activity in storage for four months at 26 °C and seven months at 10 °C. This coating also significantly reduced bacterial loads in seedlings grown from contaminated seeds, without affecting seed germination. Bacteriophage-polymer coatings which are stable during drying and storage, and are compatible with biological systems, not only provide an alternative to traditional antibiotics in agriculture, but also provide options for food, environmental and medical applications.


Subject(s)
Actinobacteria/virology , Bacteriophages/metabolism , Biological Control Agents/metabolism , Plant Diseases/prevention & control , Seeds/microbiology , Zea mays/microbiology , Actinobacteria/metabolism , Clavibacter , Excipients/chemistry , Phase Transition , Plant Diseases/microbiology , Polymers/chemistry , Seeds/chemistry , Zea mays/chemistry
2.
Plant Sci ; 252: 76-87, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27717480

ABSTRACT

We have identified a viable-yellow and a lethal-yellow chlorophyll-deficient mutant in soybean. Segregation patterns suggested single-gene recessive inheritance for each mutant. The viable- and lethal-yellow plants showed significant reduction of chlorophyll a and b. Photochemical energy conversion efficiency and photochemical reflectance index were reduced in the viable-yellow plants relative to the wildtype, whereas the lethal-yellow plants showed no electron transport activity. The viable-yellow plants displayed reduced thylakoid stacking, while the lethal-yellow plants exhibited failure of proplastid differentiation into normal chloroplasts with grana. Genetic analysis revealed recessive epistatic interaction between the viable- and the lethal-yellow genes. The viable-yellow gene was mapped to a 58kb region on chromosome 2 that contained seven predicted genes. A frame shift mutation, due to a single base deletion in Glyma.02g233700, resulted in an early stop codon. Glyma.02g233700 encodes a translocon in the inner membrane of chloroplast (GmTic110) that plays a critical role in plastid biogenesis. The lethal-yellow gene was mapped to an 83kb region on chromosome 3 that contained 13 predicted genes. Based on the annotated functions, we sequenced three potential candidate genes. A single base insertion in the second exon of Glyma.03G230300 resulted in a truncated protein. Glyma.03G230300 encodes for GmPsbP, an extrinsic protein of Photosystem II that is critical for oxygen evolution during photosynthesis. GmTic110 and GmPsbP displayed highly reduced expression in the viable- and lethal-yellow mutants, respectively. The yellow phenotypes in the viable- and lethal-yellow mutants were due to the loss of function of GmTic110 or GmPsbP resulting in photooxidative stress.


Subject(s)
Chlorophyll/physiology , Chloroplasts/genetics , Glycine max/genetics , Chlorophyll/genetics , Chlorophyll/metabolism , Chloroplasts/metabolism , Chloroplasts/physiology , Chromosome Mapping , Chromosomes, Plant , DNA Mutational Analysis , Epistasis, Genetic , Genes, Recessive , Mutation , Photosystem II Protein Complex/genetics , Glycine max/metabolism , Glycine max/physiology
3.
Int J Biometeorol ; 51(6): 493-503, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17437135

ABSTRACT

The development of maize (Zea mays L.) varieties as factories of pharmaceutical and industrial compounds has renewed interest in controlling pollen dispersal. The objective of this study was to compare gene flow into maize fields of different local pollen densities under the same environmental conditions. Two fields of approximately 36 ha were planted with a nontransgenic, white hybrid, in Ankeny, Iowa, USA. In the center of both fields, a 1-ha plot of a yellow-seeded stacked RR/Bt transgenic hybrid was planted as a pollen source. Before flowering, the white receiver maize of one field was detasseled in a 4:1 ratio to reduce the local pollen density (RPD). The percentage of outcross in the field with RPD was 42.2%, 6.3%, and 1.3% at 1, 10, and 35 m from the central plot, respectively. The percentage of outcross in the white maize with normal pollen density (NPD) was 30.1%, 2.7%, and 0.4%, respectively, at these distances. At distances greater than 100 m, the outcross frequency decreased below 0.1 and 0.03% in the field with RPD and NPD, respectively. A statistical model was used to compare pollen dispersal based on observed outcross percentages. The likelihood ratio test confirmed that the models of outcrossing in the two fields were significantly different (P is practically 0). Results indicated that when local pollen is low, the incoming pollen has a competitive advantage and the level of outcross is significantly greater than when the local pollen is abundant.


Subject(s)
Zea mays/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Crosses, Genetic , Endotoxins/genetics , Gene Flow , Genes, Plant , Glycine/analogs & derivatives , Hemolysin Proteins/genetics , Meteorological Concepts , Models, Biological , Plants, Genetically Modified , Pollen/genetics , Pollen/physiology , Zea mays/physiology , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...