Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(43): 17199-204, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24108356

ABSTRACT

We have created unique near-infrared (NIR)-emitting nanoscale metal-organic frameworks (nano-MOFs) incorporating a high density of Yb(3+) lanthanide cations and sensitizers derived from phenylene. We establish here that these nano-MOFs can be incorporated into living cells for NIR imaging. Specifically, we introduce bulk and nano-Yb-phenylenevinylenedicarboxylate-3 (nano-Yb-PVDC-3), a unique MOF based on a PVDC sensitizer-ligand and Yb(3+) NIR-emitting lanthanide cations. This material has been structurally characterized, its stability in various media has been assessed, and its luminescent properties have been studied. We demonstrate that it is stable in certain specific biological media, does not photobleach, and has an IC50 of 100 µg/mL, which is sufficient to allow live cell imaging. Confocal microscopy and inductively coupled plasma measurements reveal that nano-Yb-PVDC-3 can be internalized by cells with a cytoplasmic localization. Despite its relatively low quantum yield, nano-Yb-PVDC-3 emits a sufficient number of photons per unit volume to serve as a NIR-emitting reporter for imaging living HeLa and NIH 3T3 cells. NIR microscopy allows for highly efficient discrimination between the nano-MOF emission signal and the cellular autofluorescence arising from biological material. This work represents a demonstration of the possibility of using NIR lanthanide emission for biological imaging applications in living cells with single-photon excitation.


Subject(s)
Lanthanoid Series Elements/chemistry , Metal Nanoparticles/chemistry , Spectroscopy, Near-Infrared/methods , Ytterbium/chemistry , Animals , Crystallization , HeLa Cells , Humans , Lanthanoid Series Elements/pharmacokinetics , Metal Nanoparticles/ultrastructure , Mice , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Fluorescence , NIH 3T3 Cells , Photons , Polyvinyl Chloride/analogs & derivatives , Polyvinyl Chloride/chemistry , Polyvinyl Chloride/pharmacokinetics , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction , Ytterbium/pharmacokinetics
2.
J Am Chem Soc ; 135(36): 13356-64, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23672715

ABSTRACT

In this work, we studied enzyme-catalyzed oxidation of single-walled carbon nanotubes (SWCNTs) produced by the high-pressure carbon monoxide (HiPco) method. While oxidation via strong acids introduced defect sites on SWCNTs and suppressed their near-infrared (NIR) fluorescence, our results indicated that the fluorescence of SWCNTs was restored upon enzymatic oxidation, providing new evidence that the reaction catalyzed by horseradish peroxidase (HRP) in the presence of H2O2 is mainly a defect-consuming step. These results were further supported by both UV-vis-NIR and Raman spectroscopy. Therefore, when acid oxidation followed by HRP-catalyzed enzyme oxidation was employed, shortened (<300 nm in length) and NIR-fluorescent SWCNTs were produced. In contrast, upon treatment with myeloperoxidase, H2O2, and NaCl, the oxidized HiPco SWCNTs underwent complete oxidation (i.e., degradation). The shortened, NIR-fluorescent SWCNTs resulting from HRP-catalyzed oxidation of acid-cut HiPco SWCNTs may find applications in cellular NIR imaging and drug delivery systems.


Subject(s)
Fluorescence , Horseradish Peroxidase/metabolism , Nanotubes, Carbon/chemistry , Biocatalysis , Horseradish Peroxidase/chemistry , Models, Molecular , Oxidation-Reduction , Particle Size , Surface Properties
3.
Biomaterials ; 32(35): 9343-52, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21925728

ABSTRACT

We have created a dendrimer complex suitable for preferential accumulation within liver tumors and luminescence imaging by substituting thirty-two naphthalimide fluorophores on the surface of the dendrimer and incorporating eight europium cations within the branches. We demonstrate the utility and performance of this luminescent dendrimer complex to detect hepatic tumors generated via direct subcapsular implantation or via splenic injections of colorectal cancer cells (CC531) into WAG/RijHsd rats. Luminescence imaging of the tumors after injection of the dendrimer complex via hepatic arterial infusion revealed that the dendrimer complex can preferentially accumulate within liver tumors. Further investigation indicated that dendrimer luminescence in hepatic tumors persisted in vivo. Due to the incorporation of lanthanide cations, this luminescence agent presents a strong resistance against photobleaching. These studies show the dendrimer complex has great potential to serve as an innovative accumulation and imaging agent for the detection of metastatic tumors in our rat hepatic model.


Subject(s)
Dendrimers/metabolism , Dendrimers/pharmacokinetics , Diagnostic Imaging/methods , Europium/metabolism , Liver Neoplasms/metabolism , Luminescence , Animals , Cell Line, Tumor , Colorectal Neoplasms/pathology , Dendrimers/administration & dosage , Dendrimers/chemistry , Electrophoresis , Europium/administration & dosage , In Vitro Techniques , Infusions, Intra-Arterial , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Male , Rats , Spectrometry, Fluorescence , Time Factors
4.
J Am Chem Soc ; 133(40): 16219-34, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21882836

ABSTRACT

This work illustrates a simple approach for optimizing the lanthanide luminescence in molecular dinuclear lanthanide complexes and identifies a particular multidentate europium complex as the best candidate for further incorporation into polymeric materials. The central phenyl ring in the bis-tridentate model ligands L3­L5, which are substituted with neutral (X = H, L3), electron-withdrawing (X = F, L4), or electron-donating (X = OCH3, L5) groups, separates the 2,6-bis(benzimidazol-2-yl)pyridine binding units of linear oligomeric multi-tridentate ligand strands that are designed for the complexation of luminescent trivalent lanthanides, Ln(III). Reactions of L3­L5 with [Ln(hfac)3(diglyme)] (hfac­ is the hexafluoroacetylacetonate anion) produce saturated single-stranded dumbbell-shaped complexes [Ln2(Lk)(hfac)6] (k = 3­5), in which the lanthanide ions of the two nine-coordinate neutral [N3Ln(hfac)3] units are separated by 12­14 Å. The thermodynamic affinities of [Ln(hfac)3] for the tridentate binding sites in L3­L5 are average (6.6 ≤ log(ß(2,1)(Y,Lk)) ≤ 8.4) but still result in 15­30% dissociation at millimolar concentrations in acetonitrile. In addition to the empirical solubility trend found in organic solvents (L4 > L3 >> L5), which suggests that the 1,4-difluorophenyl spacer in L4 is preferable, we have developed a novel tool for deciphering the photophysical sensitization processes operating in [Eu2(Lk)(hfac)6]. A simple interpretation of the complete set of rate constants characterizing the energy migration mechanisms provides straightforward objective criteria for the selection of [Eu2(L4)(hfac)6] as the most promising building block.


Subject(s)
Lanthanoid Series Elements/chemistry , Luminescent Agents/chemistry , Benzimidazoles/chemistry , Europium/chemistry , Models, Molecular , Polymers/chemistry , Pyridines/chemistry
5.
J Am Chem Soc ; 131(50): 18069-71, 2009 Dec 23.
Article in English | MEDLINE | ID: mdl-19938832

ABSTRACT

We demonstrate the conceptual advantage of using metal-organic frameworks (MOFs) for the creation of a polymetallic material that contains several different near-IR-emitting lanthanide cations and operates as a barcode material with unique luminescence properties. By choosing the ratio of lanthanide salts used during the synthesis, we can control the ratio of lanthanide cations present in the resulting material. We have demonstrated that the emission intensity of each of the different lanthanide cations is proportional to its amount in the MOF crystal, resulting in unique spectroscopic barcodes that depend on the lanthanide cation ratios and compositions.


Subject(s)
Electronic Data Processing/methods , Lanthanoid Series Elements/chemistry , Luminescent Agents/chemistry , Organometallic Compounds/chemistry , Electronic Data Processing/instrumentation , Luminescent Measurements , Materials Testing , Models, Molecular , Molecular Structure , Spectroscopy, Near-Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...