Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Neuroinflammation ; 21(1): 151, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840215

ABSTRACT

BACKGROUND: Mounting evidence links glucose intolerance and diabetes as aspects of metabolic dysregulation that are associated with an increased risk of developing dementia. Inflammation and inflammasome activation have emerged as a potential link between these disparate pathologies. As diet is a key factor in both the development of metabolic disorders and inflammation, we hypothesize that long term changes in dietary factors can influence nervous system function by regulating inflammasome activity and that this phenotype would be sex-dependent, as sex hormones are known to regulate metabolism and immune processes. METHODS: 5-week-old male and female transgenic mice expressing a caspase-1 bioluminescent reporter underwent cranial window surgeries and were fed control (65% complex carbohydrates, 15% fat), high glycemic index (65% carbohydrates from sucrose, 15% fat), or ketogenic (1% complex carbohydrates, 79% fat) diet from 6 to 26 weeks of age. Glucose regulation was assessed with a glucose tolerance test following a 4-h morning fast. Bioluminescence in the brain was quantified using IVIS in vivo imaging. Blood cytokine levels were measured using cytokine bead array. 16S ribosomal RNA gene amplicon sequencing of mouse feces was performed to assess alterations in the gut microbiome. Behavior associated with these dietary changes was also evaluated. RESULTS: The ketogenic diet caused weight gain and glucose intolerance in both male and female mice. In male mice, the high glycemic diet led to increased caspase-1 biosensor activation over the course of the study, while in females the ketogenic diet drove an increase in biosensor activation compared to their respective controls. These changes correlated with an increase in inflammatory cytokines present in the serum of test mice and the emergence of anxiety-like behavior. The microbiome composition differed significantly between diets; however no significant link between diet, glucose tolerance, or caspase-1 signal was established. CONCLUSIONS: Our findings suggest that diet composition, specifically the source and quantity of carbohydrates, has sex-specific effects on inflammasome activation in the central nervous system and behavior. This phenotype manifested as increased anxiety in male mice, and future studies are needed to determine if this phenotype is linked to alterations in microbiome composition.


Subject(s)
Caspase 1 , Diet, Ketogenic , Mice, Transgenic , Sex Characteristics , Animals , Female , Male , Mice , Caspase 1/metabolism , Diet, Ketogenic/adverse effects , Dietary Carbohydrates/adverse effects , Dietary Carbohydrates/pharmacology , Central Nervous System/metabolism , Gastrointestinal Microbiome/physiology , Mice, Inbred C57BL
2.
Neurotherapeutics ; : e00376, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876822

ABSTRACT

The neurodevelopmental disorder Pitt Hopkins syndrome (PTHS) causes clinical symptoms similar to Rett syndrome (RTT) patients. However, RTT is caused by MECP2 mutations whereas mutations in the TCF4 gene lead to PTHS. The mechanistic commonalities underling these two disorders are unknown, but their shared symptomology suggest that convergent pathway-level disruption likely exists. We reprogrammed patient skin derived fibroblasts into induced neuronal progenitor cells. Interestingly, we discovered that MeCP2 levels were decreased in PTHS patient iNPCs relative to healthy controls and that both iNPCs and iAstrocytes displayed defects in function and differentiation in a mutation-specific manner. When Tcf4+/- mice were genetically crossed with mice overexpressing MeCP2, molecular and phenotypic defects were significantly ameliorated, underlining and important role of MeCP2 in PTHS pathology. Importantly, post-natal intracerebroventricular gene replacement therapy with adeno-associated viral vector serotype 9 (AAV9)-expressing MeCP2 (AAV9.P546.MeCP2) significantly improved iNPC and iAstrocyte function and effectively ameliorated histological and behavioral defects in Tcf4+/- mice. Combined, our data suggest a previously unknown role of MeCP2 in PTHS pathology and common pathways that might be affected in multiple neurodevelopmental disorders. Our work highlights potential novel therapeutic targets for PTHS, including upregulation of MeCP2 expression or its downstream targets or, potentially, MeCP2-based gene therapy.

3.
bioRxiv ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38659804

ABSTRACT

Rett syndrome (RTT) is a neurodevelopmental disorder that is caused by loss-of-function mutations in the methyl-CpG binding protein 2 ( MeCP2 ) gene. RTT patients experience a myriad of debilitating symptoms, which include respiratory phenotypes that are often associated with lethality. Our previous work established that expression of the M 1 muscarinic acetylcholine receptor (mAchR) is decreased in RTT autopsy samples, and that potentiation of the M 1 receptor improves apneas in a mouse model of RTT; however, the population of neurons driving this rescue is unclear. Loss of Mecp2 correlates with excessive neuronal activity in cardiorespiratory nuclei. Since M 1 is found on cholinergic interneurons, we hypothesized that M 1 -potentiating compounds decrease apnea frequency by tempering brainstem hyperactivity. To test this, Mecp2 +/- and Mecp2 +/+ mice were screened for apneas before and after administration of the M 1 positive allosteric modulator (PAM) VU0453595 (VU595). Brains from the same mice were then imaged for c-Fos, ChAT, and Syto16 using whole-brain light-sheet microscopy to establish genotype and drug-dependent activation patterns that could be correlated with VU595's efficacy on apneas. The vehicle-treated Mecp2 +/- brain exhibited broad hyperactivity when coupled with the phenotypic prescreen, which was significantly decreased by administration of VU595, particularly in regions known to modulate the activity of respiratory nuclei (i.e. hippocampus and striatum). Further, the extent of apnea rescue in each mouse showed a significant positive correlation with c-Fos expression in non-cholinergic neurons in the striatum, thalamus, dentate gyrus, and within the cholinergic neurons of the brainstem. These results indicate that Mecp2 +/- mice are prone to hyperactivity in brain regions that regulate respiration, which can be normalized through M 1 potentiation.

4.
Neurotherapeutics ; 19(4): 1340-1352, 2022 07.
Article in English | MEDLINE | ID: mdl-35670902

ABSTRACT

Rett syndrome (RTT) is a neurodevelopmental disorder that is characterized by developmental regression, loss of communicative ability, stereotyped hand wringing, cognitive impairment, and central apneas, among many other symptoms. RTT is caused by loss-of-function mutations in a methyl-reader known as methyl-CpG-binding protein 2 (MeCP2), a protein that links epigenetic changes on DNA to larger chromatin structure. Historically, target identification for RTT has relied heavily on Mecp2 knockout mice; however, we recently adopted the alternative approach of performing transcriptional profiling in autopsy samples from RTT patients. Through this mechanism, we identified muscarinic acetylcholine receptors (mAChRs) as potential therapeutic targets. Here, we characterized a cohort of 40 temporal cortex samples from individuals with RTT and quantified significantly decreased levels of the M1, M2, M3, and M5 mAChRs subtypes relative to neurotypical controls. Of these four subtypes, M1 expression demonstrated a linear relationship with MeCP2 expression, such that M1 levels were only diminished in contexts where MeCP2 was also significantly decreased. Further, we show that M1 potentiation with the positive allosteric modulator (PAM) VU0453595 (VU595) rescued social preference, spatial memory, and associative memory deficits, as well as decreased apneas in Mecp2+/- mice. VU595's efficacy on apneas in Mecp2+/- mice was mediated by the facilitation of the transition from inspiration to expiration. Molecular analysis correlated rescue with normalized global gene expression patterns in the brainstem and hippocampus, as well as increased Gsk3ß inhibition and NMDA receptor trafficking. Together, these data suggest that M1 PAMs could represent a new class of RTT therapeutics.


Subject(s)
Rett Syndrome , Mice , Animals , Rett Syndrome/drug therapy , Rett Syndrome/genetics , Rett Syndrome/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Apnea , Receptors, N-Methyl-D-Aspartate , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Mice, Knockout , Receptors, Muscarinic/genetics , Receptors, Muscarinic/metabolism , Chromatin
5.
ACS Chem Neurosci ; 13(13): 1891-1901, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35671352

ABSTRACT

Hypofunction of cholinergic circuits and diminished cholinergic tone have been associated with the neurodevelopmental disorder Rett syndrome (RTT). Specifically, deletion of Mecp2 in cholinergic neurons evokes the same social and cognitive phenotypes in mice seen with global Mecp2 knockout, and decreased choline acetyltransferase activity and vesamicol binding have been reported in RTT autopsy samples. Further, we recently identified significant decreases in muscarinic acetylcholine receptor subtype 4 (M4) expression in both the motor cortex and cerebellum of RTT patient autopsies and established proof of concept that an acute dose of the positive allosteric modulator (PAM) VU0467154 (VU154) rescued phenotypes in Mecp2+/- mice. Here, we expand the assessment of M4 PAMs in RTT to address clinically relevant questions of tolerance, scope of benefit, dose response, chronic treatment, and mechanism. We show that VU154 has efficacy on anxiety, social preference, cognitive, and respiratory phenotypes in Mecp2+/- mice; however, the therapeutic range is narrow, with benefits seen at 3 mg/kg concentrations, but not 1 or 10 mg/kg. Further, sociability was diminished in VU154-treated Mecp2+/- mice, suggestive of a potential adverse effect. Compound efficacy on social, cognitive, and respiratory phenotypes was conserved with a 44-day treatment paradigm, with the caveat that breath rate was moderately decreased with chronic treatment in Mecp2+/+ and Mecp2+/- mice. VU154 effects on respiratory function correlated with an increase in Gsk3ß inhibition in the brainstem. These results identify the core symptom domains where efficacy and adverse effects may present with M4 administration in RTT model mice and advocate for the continued evaluation as potential RTT therapeutics.


Subject(s)
Pyridazines , Rett Syndrome , Animals , Cholinergic Agents , Disease Models, Animal , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Knockout , Pyridazines/pharmacology , Thiophenes/pharmacology
6.
Neuropharmacology ; 209: 109022, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35248529

ABSTRACT

Rett syndrome (RTT) and MECP2 Duplication syndrome (MDS) have opposing molecular origins in relation to expression and function of the transcriptional regulator Methyl-CpG-binding protein 2 (MeCP2). Several clinical and preclinical phenotypes, however, are shared between these disorders. Modulation of MeCP2 levels has recently emerged as a potential treatment option for both of these diseases. However, toxicity concerns remain with these approaches. Here, we focus on pharmacologically modulating the group II metabotropic glutamate receptors (mGlu), mGlu2 and mGlu3, which are two downstream targets of MeCP2 that are bidirectionally affected in expression in RTT patients and mice (Mecp2Null/+) versus an MDS mouse model (MECP2Tg1/o). Mecp2Null/+ and MECP2Tg1/o animals also exhibit contrasting phenotypes in trace fear acquisition, a form of temporal associative learning and memory, with trace fear deficiency observed in Mecp2Null/+ mice and abnormally enhanced trace fear acquisition in MECP2Tg1/o animals. In Mecp2Null/+ mice, treatment with the mGlu2/3 agonist LY379268 reverses the deficit in trace fear acquisition, and mGlu2/3 antagonism with LY341495 normalizes the abnormal trace fear learning and memory phenotype in MECP2Tg1/o mice. Altogether, these data highlight the role of group II mGlu receptors in RTT and MDS and demonstrate that both mGlu2 and mGlu3 may be potential therapeutic targets for these disorders.


Subject(s)
Mental Retardation, X-Linked , Receptors, Metabotropic Glutamate , Rett Syndrome , Animals , Disease Models, Animal , Humans , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Metabotropic Glutamate/metabolism , Rett Syndrome/drug therapy , Rett Syndrome/genetics , Rett Syndrome/metabolism
7.
Genes Brain Behav ; 21(1): e12752, 2022 01.
Article in English | MEDLINE | ID: mdl-34002468

ABSTRACT

De novo loss-of-function mutations in methyl-CpG-binding protein 2 (MeCP2) lead to the neurodevelopmental disorder Rett syndrome (RTT). Despite promising results from strategies aimed at increasing MeCP2 levels, additional studies exploring how hypomorphic MeCP2 mutations impact the therapeutic window are needed. Here, we investigated the consequences of genetically introducing a wild-type MECP2 transgene in the Mecp2 R133C mouse model of RTT. The MECP2 transgene reversed the majority of RTT-like phenotypes exhibited by male and female Mecp2 R133C mice. However, three core symptom domains were adversely affected in female Mecp2R133C/+ animals; these phenotypes resemble those observed in disease contexts of excess MeCP2. Parallel control experiments in Mecp2Null/+ mice linked these adverse effects to the hypomorphic R133C mutation. Collectively, these data provide evidence regarding the safety and efficacy of genetically overexpressing functional MeCP2 in Mecp2 R133C mice and suggest that personalized approaches may warrant consideration for the clinical assessment of MeCP2-targeted therapies.


Subject(s)
Genetic Therapy/methods , Methyl-CpG-Binding Protein 2/genetics , Phenotype , Rett Syndrome/therapy , Animals , Female , Male , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mice, Inbred C57BL , Mutation , Rett Syndrome/genetics
8.
J Med Chem ; 64(19): 14757-14772, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34597046

ABSTRACT

T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3; HAVCR2) has emerged as an attractive immune checkpoint target for cancer immunotherapy. TIM-3 is a negative regulator of the systemic immune response to cancer and is expressed on several dysfunctional, or exhausted, immune cell subsets. Upregulation of TIM-3 is associated with tumor progression, poor survival rates, and acquired resistance to antibody-based immunotherapies in the clinic. Despite the potential advantages of small-molecule inhibitors over antibodies, the discovery of small-molecule inhibitors has lagged behind that of antibody therapeutics. Here, we describe the discovery of high-affinity small-molecule ligands for TIM-3 through an NMR-based fragment screen and structure-based lead optimization. These compounds represent useful tools to further study the biology of TIM-3 immune modulation in cancer and serve as a potentially useful starting point toward the discovery of TIM-3-targeted therapeutics.


Subject(s)
Drug Discovery , Hepatitis A Virus Cellular Receptor 2/metabolism , Small Molecule Libraries/pharmacology , T-Lymphocytes/metabolism , Crystallography, X-Ray , Fluorescence Polarization , Humans , Protein Binding , Protein Domains , Small Molecule Libraries/chemistry , Structure-Activity Relationship
9.
Proteins ; 89(11): 1399-1412, 2021 11.
Article in English | MEDLINE | ID: mdl-34156100

ABSTRACT

The Receptor for Advanced Glycation End products (RAGE) is a pattern recognition receptor that signals for inflammation via the NF-κB pathway. RAGE has been pursued as a potential target to suppress symptoms of diabetes and is of interest in a number of other diseases associated with chronic inflammation, such as inflammatory bowel disease and bronchopulmonary dysplasia. Screening and optimization have previously produced small molecules that inhibit the activity of RAGE in cell-based assays, but efforts to develop a therapeutically viable direct-binding RAGE inhibitor have yet to be successful. Here, we show that a fragment-based approach can be applied to discover fundamentally new types of RAGE inhibitors that specifically target the ligand-binding surface. A series of systematic assays of structural stability, solubility, and crystallization were performed to select constructs of the RAGE ligand-binding domain and optimize conditions for NMR-based screening and co-crystallization of RAGE with hit fragments. An NMR-based screen of a highly curated ~14 000-member fragment library produced 21 fragment leads. Of these, three were selected for elaboration based on structure-activity relationships generated through cycles of structural analysis by X-ray crystallography, structure-guided design principles, and synthetic chemistry. These results, combined with crystal structures of the first linked fragment compounds, demonstrate the applicability of the fragment-based approach to the discovery of RAGE inhibitors.


Subject(s)
Benzamides/chemistry , Drug Design/methods , Imidazoles/chemistry , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Small Molecule Libraries/chemistry , Benzamides/metabolism , Benzamides/pharmacology , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Imidazoles/metabolism , Imidazoles/pharmacology , Ligands , Models, Molecular , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptor for Advanced Glycation End Products/chemistry , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
10.
Biol Psychiatry ; 90(6): 385-398, 2021 09 15.
Article in English | MEDLINE | ID: mdl-33965197

ABSTRACT

BACKGROUND: Polymorphisms in GRM3, the gene encoding the mGlu3 metabotropic glutamate receptor, are associated with impaired cognition and neuropsychiatric disorders such as schizophrenia. Limited availability of selective genetic and molecular tools has hindered progress in developing a clear understanding of the mechanisms through which mGlu3 receptors regulate synaptic plasticity and cognition. METHODS: We examined associative learning in mice with trace fear conditioning, a hippocampal-dependent learning task disrupted in patients with schizophrenia. Underlying cellular mechanisms were assessed using ex vivo hippocampal slice preparations with selective pharmacological tools and selective genetic deletion of mGlu3 receptor expression in specific neuronal subpopulations. RESULTS: mGlu3 receptor activation enhanced trace fear conditioning and reversed deficits induced by subchronic phencyclidine. Mechanistic studies revealed that mGlu3 receptor activation induced metaplastic changes, biasing afferent stimulation to induce long-term potentiation through an mGlu5 receptor-dependent, endocannabinoid-mediated, disinhibitory mechanism. Selective genetic deletion of either mGlu3 or mGlu5 from hippocampal pyramidal cells eliminated effects of mGlu3 activation, revealing a novel mechanism by which mGlu3 and mGlu5 interact to enhance cognitive function. CONCLUSIONS: These data demonstrate that activation of mGlu3 receptors in hippocampal pyramidal cells enhances hippocampal-dependent cognition in control and impaired mice by inducing a novel form of metaplasticity to regulate circuit function, providing a clear mechanism through which genetic variation in GRM3 can contribute to cognitive deficits. Developing approaches to positively modulate mGlu3 receptor function represents an encouraging new avenue for treating cognitive disruption in schizophrenia and other psychiatric diseases.


Subject(s)
Receptors, Metabotropic Glutamate , Schizophrenia , Animals , Cognition , Hippocampus/metabolism , Long-Term Potentiation , Mice , Receptors, Metabotropic Glutamate/metabolism , Schizophrenia/genetics
11.
JCI Insight ; 6(4)2021 02 22.
Article in English | MEDLINE | ID: mdl-33476302

ABSTRACT

The metabotropic glutamate receptor 7 (mGlu7) is a G protein-coupled receptor that has been recently linked to neurodevelopmental disorders. This association is supported by the identification of GRM7 variants in patients with autism spectrum disorder, attention deficit hyperactivity disorder, and severe developmental delay. One GRM7 mutation previously reported in 2 patients results in a single amino acid change, I154T, within the mGlu7 ligand-binding domain. Here, we report 2 new patients with this mutation who present with severe developmental delay and epilepsy. Functional studies of the mGlu7-I154T mutant reveal that this substitution resulted in significant loss of mGlu7 protein expression in HEK293A cells and in mice. We show that this occurred posttranscriptionally at the level of protein expression and trafficking. Similar to mGlu7-global KO mice, mGlu7-I154T animals exhibited reduced motor coordination, deficits in contextual fear learning, and seizures. This provides functional evidence that a disease-associated mutation affecting the mGlu7 receptor was sufficient to cause neurological dysfunction in mice and further validates GRM7 as a disease-causing gene in the human population.


Subject(s)
Autism Spectrum Disorder/genetics , Genetic Predisposition to Disease/genetics , Phenotype , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Animals , Child , Child, Preschool , Epilepsy , Fear , Female , GTP-Binding Proteins , Humans , Infant , Learning , Male , Mice , Mice, Inbred C57BL , Mutation , Neurodevelopmental Disorders/genetics , Pedigree , Seizures
12.
Genes Brain Behav ; 19(7): e12654, 2020 09.
Article in English | MEDLINE | ID: mdl-32248644

ABSTRACT

Neurodevelopmental disorders are characterized by deficits in communication, cognition, attention, social behavior and/or motor control. Previous studies have pointed to the involvement of genes that regulate synaptic structure and function in the pathogenesis of these disorders. One such gene, GRM7, encodes the metabotropic glutamate receptor 7 (mGlu7 ), a G protein-coupled receptor that regulates presynaptic neurotransmitter release. Mutations and polymorphisms in GRM7 have been associated with neurodevelopmental disorders in clinical populations; however, limited preclinical studies have evaluated mGlu7 in the context of this specific disease class. Here, we show that the absence of mGlu7 in mice is sufficient to alter phenotypes within the domains of social behavior, associative learning, motor function, epilepsy and sleep. Moreover, Grm7 knockout mice exhibit an attenuated response to amphetamine. These findings provide rationale for further investigation of mGlu7 as a potential therapeutic target for neurodevelopmental disorders such as idiopathic autism, attention deficit hyperactivity disorder and Rett syndrome.


Subject(s)
Amphetamine-Related Disorders/genetics , Epilepsy/genetics , Neurodevelopmental Disorders/genetics , Receptors, Metabotropic Glutamate/genetics , Animals , Female , Learning , Male , Mice , Neurodevelopmental Disorders/physiopathology , Phenotype , Receptors, Metabotropic Glutamate/deficiency , Sleep , Social Behavior
13.
J Med Chem ; 63(2): 656-675, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31858797

ABSTRACT

WD repeat domain 5 (WDR5) is a member of the WD40-repeat protein family that plays a critical role in multiple chromatin-centric processes. Overexpression of WDR5 correlates with a poor clinical outcome in many human cancers, and WDR5 itself has emerged as an attractive target for therapy. Most drug-discovery efforts center on the WIN site of WDR5 that is responsible for the recruitment of WDR5 to chromatin. Here, we describe discovery of a novel WDR5 WIN site antagonists containing a dihydroisoquinolinone bicyclic core using a structure-based design. These compounds exhibit picomolar binding affinity and selective concentration-dependent antiproliferative activities in sensitive MLL-fusion cell lines. Furthermore, these WDR5 WIN site binders inhibit proliferation in MYC-driven cancer cells and reduce MYC recruitment to chromatin at MYC/WDR5 co-bound genes. Thus, these molecules are useful probes to study the implication of WDR5 inhibition in cancers and serve as a potential starting point toward the discovery of anti-WDR5 therapeutics.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Quinolones/chemical synthesis , Quinolones/pharmacology , WD40 Repeats/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation , Chromatin/drug effects , Chromatin/genetics , Crystallography, X-Ray , Drug Design , Drug Discovery , Epigenetic Repression/drug effects , Genes, myc/drug effects , Humans , Structure-Activity Relationship
14.
ACS Pharmacol Transl Sci ; 2(3): 198-209, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31259318

ABSTRACT

Metabotropic glutamate (mGlu) receptor type 5 (mGlu5) positive allosteric modulators (PAMs) enhance hippocampal long-term potentiation (LTP) and have cognition-enhancing effects in animal models. These effects were initially thought to be mediated by potentiation of mGlu5 modulation of N-methyl-d-aspartate receptor (NMDAR) currents. However, a biased mGlu5 PAM that potentiates Gαq-dependent mGlu5 signaling, but not mGlu5 modulation of NMDAR currents, retains cognition-enhancing effects in animal models, suggesting that potentiation of NMDAR currents is not required for these in vivo effects of mGlu5 PAMs. However, it is not clear whether the potentiation of NMDAR currents is critical for the ability of mGlu5 PAMs to enhance hippocampal LTP. We now report the characterization of effects of two structurally distinct mGlu5 PAMs, VU-29 and VU0092273, on NMDAR currents and hippocampal LTP. As with other mGlu5 PAMs that do not display observable bias for potentiation of NMDAR currents, VU0092273 enhanced both mGlu5 modulation of NMDAR currents and induction of LTP at the hippocampal Schaffer collateral (SC)-CA1 synapse. In contrast, VU-29 did not potentiate mGlu5 modulation of NMDAR currents but induced robust potentiation of hippocampal LTP. Interestingly, both VU-29 and VU0092273 suppressed evoked inhibitory postsynaptic currents (eIPSCs) in CA1 pyramidal cells, and this effect was blocked by the cannabinoid receptor type 1 (CB1) antagonist AM251. Furthermore, AM251 blocked the ability of both mGlu5 PAMs to enhance LTP. Finally, both PAMs failed to enhance LTP in mice with the restricted genetic deletion of mGlu5 in CA1 pyramidal cells. Taken together with previous findings, these results suggest that enhancement of LTP by mGlu5 PAMs does not depend on mGlu5 modulation of NMDAR currents but is mediated by a previously established mechanism in which mGlu5 in CA1 pyramidal cells induces endocannabinoid release and CB1-dependent disinhibition.

15.
Cell Rep ; 26(11): 2916-2928.e13, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30865883

ABSTRACT

The chromatin-associated protein WDR5 is a promising target for pharmacological inhibition in cancer. Drug discovery efforts center on the blockade of the "WIN site" of WDR5, a well-defined pocket that is amenable to small molecule inhibition. Various cancer contexts have been proposed to be targets for WIN site inhibitors, but a lack of understanding of WDR5 target genes and of the primary effects of WIN site inhibitors hampers their utility. Here, by the discovery of potent WIN site inhibitors, we demonstrate that the WIN site links WDR5 to chromatin at a small cohort of loci, including a specific subset of ribosome protein genes. WIN site inhibitors rapidly displace WDR5 from chromatin and decrease the expression of associated genes, causing translational inhibition, nucleolar stress, and p53 induction. Our studies define a mode by which WDR5 engages chromatin and forecast that WIN site blockade could have utility against multiple cancer types.


Subject(s)
Chromatin/metabolism , Enzyme Inhibitors/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Binding Sites , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Female , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/chemistry , Male , Protein Binding/drug effects
16.
Trends Pharmacol Sci ; 40(4): 233-236, 2019 04.
Article in English | MEDLINE | ID: mdl-30905360

ABSTRACT

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the Methyl CpG binding protein 2 (MeCP2) gene. This Science & Society article focuses on pharmacological strategies that attack RTT treatment from multiple angles, including drug repurposing and de novo discovery efforts, and discusses the impacts of preclinical study design and translationally relevant outcome measures.


Subject(s)
Drug Discovery/methods , Methyl-CpG-Binding Protein 2/genetics , Rett Syndrome/drug therapy , Animals , Drug Evaluation, Preclinical/methods , Drug Repositioning , Female , Humans , Mutation , Research Design , Rett Syndrome/genetics , Rett Syndrome/physiopathology
17.
ACS Pharmacol Transl Sci ; 2(6): 442-452, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-32259076

ABSTRACT

Allosteric modulation of GPCRs represents an increasingly explored approach in drug development. Due to complex pharmacology, however, the relationship(s) between modulator properties determined in vitro with in vivo concentration-effect phenomena is frequently unclear. We investigated key pharmacological properties of a set of metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) and their relevance to in vivo concentration-response relationships. These studies identified a significant relationship between in vitro PAM cooperativity (αß), as well as the maximal response obtained from a simple in vitro PAM concentration-response experiment, with in vivo efficacy for reversal of amphetamine-induced hyperlocomotion. This correlation did not exist with PAM potency or affinity. Data across PAMs were then converged to calculate an in vivo concentration of glutamate putatively relevant to the mGlu5 PAM mechanism of action. This work demonstrates the ability to merge in vitro pharmacology profiles with relevant behavioral outcomes and also provides a novel method to estimate neurotransmitter concentrations in vivo.

18.
Neuropharmacology ; 144: 19-28, 2019 01.
Article in English | MEDLINE | ID: mdl-30326237

ABSTRACT

Stress can precipitate or worsen symptoms of many psychiatric illnesses. Dysregulation of the prefrontal cortex (PFC) glutamate system may underlie these disruptions and restoring PFC glutamate signaling has emerged as a promising avenue for the treatment of stress disorders. Recently, we demonstrated that activation of metabotropic glutamate receptor subtype 3 (mGlu3) induces a postsynaptic form of long-term depression (LTD) that is dependent on the activity of another subtype, mGlu5. Stress exposure disrupted this plasticity, but the underlying signaling mechanisms and involvement in higher-order cognition have not yet been investigated. Acute stress was applied by 20-min restraint and early reversal learning was evaluated in an operant-based food-seeking task. We employed whole-cell patch-clamp recordings of layer 5 prelimbic (PL)-PFC pyramidal cells to examine mGlu3-LTD and several mechanistically distinct mGlu5-dependent functions. Acute stress impaired both mGlu3-LTD and early reversal learning. Interestingly, potentiating mGlu5 signaling with the mGlu5 positive allosteric modulator (PAM) VU0409551 rescued stress-induced deficits in both mGlu3-LTD and reversal learning. Other aspects of PL-PFC mGlu5 function were not disrupted following stress; however, signaling downstream of mGlu5-Homer interactions, phosphoinositide-3-kinase (PI3K), Akt, and glycogen synthase kinase 3ß was implicated in these phenomena. These findings demonstrate that acute stress disrupts early reversal learning and PL-PFC-dependent synaptic plasticity and that potentiating mGlu5 function can restore these impairments. These findings provide a framework through which modulating coordinated mGlu3/mGlu5 signaling may confer benefits for the treatment of stress-related psychiatric disorders.


Subject(s)
Cerebral Cortex/metabolism , Neuronal Plasticity/physiology , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Metabotropic Glutamate/metabolism , Reversal Learning/physiology , Stress, Psychological/metabolism , Animals , Appetitive Behavior/drug effects , Appetitive Behavior/physiology , Central Nervous System Agents/pharmacology , Cerebral Cortex/drug effects , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Learning Disabilities/etiology , Learning Disabilities/metabolism , Male , Mice, Inbred C57BL , Neuronal Plasticity/drug effects , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Receptor, Metabotropic Glutamate 5/agonists , Restraint, Physical , Reversal Learning/drug effects , Stress, Psychological/psychology , Tissue Culture Techniques
19.
J Med Chem ; 61(13): 5623-5642, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29889518

ABSTRACT

WDR5 is a chromatin-regulatory scaffold protein overexpressed in various cancers and a potential epigenetic drug target for the treatment of mixed-lineage leukemia. Here, we describe the discovery of potent and selective WDR5-WIN-site inhibitors using fragment-based methods and structure-based design. NMR-based screening of a large fragment library identified several chemically distinct hit series that bind to the WIN site within WDR5. Members of a 6,7-dihydro-5 H-pyrrolo[1,2- a]imidazole fragment class were expanded using a structure-based design approach to arrive at lead compounds with dissociation constants <10 nM and micromolar cellular activity against an AML-leukemia cell line. These compounds represent starting points for the discovery of clinically useful WDR5 inhibitors for the treatment of cancer.


Subject(s)
Drug Design , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/chemistry , Imidazoles/chemistry , Imidazoles/pharmacology , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Histone-Lysine N-Methyltransferase/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Structure-Activity Relationship
20.
J Pharmacol Exp Ther ; 365(2): 291-300, 2018 05.
Article in English | MEDLINE | ID: mdl-29523700

ABSTRACT

Mutations in the MeCP2 gene are responsible for the neurodevelopmental disorder Rett syndrome (RTT). MeCP2 is a DNA-binding protein whose abundance and ability to complex with histone deacetylase 3 is linked to the regulation of chromatin structure. Consequently, loss-of-function mutations in MeCP2 are predicted to have broad effects on gene expression. However, to date, studies in mouse models of RTT have identified a limited number of gene or pathway-level disruptions, and even fewer genes have been identified that could be considered amenable to classic drug discovery approaches. Here, we performed RNA sequencing (RNA-seq) on nine motor cortex and six cerebellar autopsy samples from RTT patients and controls. This approach identified 1887 significantly affected genes in the motor cortex and 2110 genes in the cerebellum, with a global trend toward increased expression. Pathway-level analysis identified enrichment in genes associated with mitogen-activated protein kinase signaling, long-term potentiation, and axon guidance. A survey of our RNA-seq results also identified a significant decrease in expression of the CHRM4 gene, which encodes a receptor [muscarinic acetylcholine receptor 4 (M4)] that is the subject of multiple large drug discovery efforts for schizophrenia and Alzheimer's disease. We confirmed that CHRM4 expression was decreased in RTT patients, and, excitingly, we demonstrated that M4 potentiation normalizes social and cognitive phenotypes in Mecp2+/- mice. This work provides an experimental paradigm in which translationally relevant targets can be identified using transcriptomics in RTT autopsy samples, back-modeled in Mecp2+/- mice, and assessed for preclinical efficacy using existing pharmacological tool compounds.


Subject(s)
Molecular Targeted Therapy , Receptor, Muscarinic M4/metabolism , Rett Syndrome/drug therapy , Rett Syndrome/genetics , Sequence Analysis, RNA , Animals , Autopsy , Cerebellum/metabolism , Humans , Mice , Motor Cortex/metabolism , Receptor, Muscarinic M4/genetics , Rett Syndrome/metabolism , Rett Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...