Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884525

ABSTRACT

The aim of the presented study is a genetic characterization of the hexaploid wheat Triticum aestivum L. Two approaches were used for the genealogical study of hexaploid wheats-the complete sequencing of chloroplast DNA and PCR-based haplotype analysis of the fourth intron of Wknox1d and of the fifth-to-sixth-exon region of Wknox1b. The complete chloroplast DNA sequences of 13 hexaploid wheat samples were determined: Free-threshing-T. aestivum subsp. aestivum, one sample; T. aestivum subsp. compactum, two samples; T. aestivum subsp. sphaerococcum, one sample; T. aestivum subsp. carthlicoides, four samples. Hulled-T. aestivum subsp. spelta, three samples; T. aestivum subsp. vavilovii jakubz., two samples. The comparative analysis of complete cpDNA sequences of 20 hexaploid wheat samples (13 samples in this article plus 7 samples sequenced in this laboratory in 2018) was carried out. PCR-based haplotype analysis of the fourth intron of Wknox1d and of the fifth-to-sixth exon region of Wknox1b of all 20 hexaploid wheat samples was carried out. The 20 hexaploid wheat samples (13 samples in this article plus 7 samples in 2018) can be divided into two groups-T. aestivum subsp. spelta, three samples and T. aestivum subsp. vavilovii collected in Armenia, and the remaining 16 samples, including T. aestivum subsp. vavilovii collected in Europe (Sweden). If we take the cpDNA of Chinese Spring as a reference, 25 SNPs can be identified. Furthermore, 13-14 SNPs can be identified in T. aestivum subsp. spelta and subsp. vavilovii (Vav1). In the other samples up to 11 SNPs were detected. 22 SNPs are found in the intergenic regions, 2 found in introns, and 10 SNPs were found in the genes, of which seven are synonymous. PCR-based haplotype analysis of the fourth intron of Wknox1d and the fifth-to-sixth-exon region of Wknox1b provides an opportunity to make an assumption that hexaploid wheats T. aestivum subsp. macha var. palaeocolchicum and var. letshckumicum differ from other macha samples by the absence of a 42 bp insertion in the fourth intron of Wknox1d. One possible explanation for this observation would be that two Aegilops tauschii Coss. (A) and (B) participated in the formation of hexaploids through the D genome: Ae. tauschii (A)-macha (1-5, 7, 8, 10-12), and Ae. tauschii (B)-macha M6, M9, T. aestivum subsp. aestivum cv. 'Chinese Spring' and cv. 'Red Doly'.


Subject(s)
DNA, Chloroplast/genetics , Gene Expression Regulation, Plant , Genome, Chloroplast , Haplotypes , Homeodomain Proteins/genetics , Plant Proteins/genetics , Triticum/genetics , Biological Evolution , Polymorphism, Single Nucleotide , Polyploidy , Triticum/growth & development
2.
Mitochondrial DNA B Resour ; 4(2): 4006-4009, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-33366292

ABSTRACT

The main aim of this research was to establish the nucleotide sequence of the highly variable region of the D loop of the mitochondrial DNA of some Georgian domestic animal species (cattle, goat, sheep) as well as their phylogenetic position among the worldwide set of domestic animals. In this study, a total of 5 haplogroups (T - 5; T3 - 7; T1 - 1; T2 - 2; T5 - 2) in 17 Georgian Mountain cattle (GMC), 4 haplogroups (A - 15; A2a1 - 3; A1a - 1; A6 - 3) in 22 Georgian goats and 3 haplogroups (A - 10; B - 16; C -15) in 41 Georgian sheeps (15 Imeretian and 26 Tushetian) were detected. This study represents the first attempt of Genetic study of native Georgian livestocks. The GMC, Georgian (Megrelian) goat, Georgian (Imeretian and Tushetian) sheep mitogenomes were grouped phylogenetically in the haplogroups indicating the closeness to the Near Eastern animals.

3.
Curr Genet ; 62(4): 791-798, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26923563

ABSTRACT

Hexaploid wheat (Triticum aestivum L., genomes AABBDD) originated in South Caucasus by allopolyploidization of the cultivated Emmer wheat T. dicoccum (genomes AABB) with the Caucasian Ae. tauschii ssp strangulata (genomes DD). Genetic variation of Ae. tauschii is an important natural resource, that is why it is of particular importance to investigate how this variation was formed during Ae. tauschii evolutionary history and how it is presented through the species area. The D genome is also found in tetraploid Ae. cylindrica Host (2n = 28, CCDD). The plasmon diversity that exists in Triticum and Aegilops species is of great significance for understanding the evolution of these genera. In the present investigation the complete nucleotide sequence of plasmon D (chloroplast DNA) of nine accessions of Ae. tauschii and two accessions of Ae. cylindrica are presented. Twenty-eight SNPs are characteristic for both TauL1 and TauL2 accessions of Ae. tauschii using TauL3 as a reference. Four SNPs are additionally observed for TauL2 lineage. The longest (27 bp) indel is located in the intergenic spacer Rps15-ndhF of SSC. This indel can be used for simple determination of TauL3 lineage among Ae. tauschii accessions. In the case of Ae. cylindrica additionally 7 SNPs were observed. The phylogeny tree shows that chloroplast DNA of TauL1 and TauL2 diverged from the TauL3 lineage. TauL1 lineage is relatively older then TauL2. The position of Ae. cylindrica accessions on Ae. tauschii phylogeny tree constructed on chloroplast DNA variation data is intermediate between TauL1 and TauL2. The complete nucleotide sequence of chloroplast DNA of Ae. tauschii and Ae. cylindrica allows to refine the origin and evolution of D plasmon of genus Aegilops.


Subject(s)
Biological Evolution , Genome, Chloroplast , Triticum/genetics , Genomics , High-Throughput Nucleotide Sequencing , INDEL Mutation , Phylogeny , Polymorphism, Single Nucleotide , Seeds/genetics , Triticum/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...