Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Chem ; 102: 107799, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36512929

ABSTRACT

The current study aims to develop a PAN India database of medicinal plants along with their phytochemicals and geographical availability. The database consists of 6959 unique medicinal plants belonging to 348 families which are available across 28 states and 8 union territories of India. The database sources the information on four different sections - traditional knowledge, geographical indications, phytochemicals, and chemoinformatics. The traditional knowledge reports the plant taxonomy with their vernacular names. A total of 27,440 unique phytochemicals associated with these plants were curated from various sources in this study. However, due to the non-availability of general information like IUPAC names, InChI key, etc. from reliable sources, only 22,314 phytochemicals have been currently reported in the database. Various analyses have been performed for the phytochemicals which include analysis of physicochemical and ADMET properties calculated from open-source web servers using in-house python scripts. The phytochemical data set has also been classified based on the class, superclass, and pathways respectively using NPClassifier, a deep learning framework. Additionally, the antiviral potency of the phytochemicals was also predicted using two machine learning models - Random Forest and XGBoost. The database aims to provide accurate and exhaustive data of the traditional practice of medicinal plants in India in a single platform integrating and analyzing the rich customary practices and facilitating the development and identification of plant-based therapeutics for a variety of diseases. The database can be accessed at https://neist.res.in/osadhi/.


Subject(s)
Medicine, Traditional , Plants, Medicinal , Humans , Plants, Medicinal/chemistry , Databases, Factual , India , Phytochemicals/pharmacology , Phytochemicals/chemistry
2.
ACS Appl Bio Mater ; 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36053225

ABSTRACT

A straightforward and convenient methodology has been developed for the reaction of 2-aminobenzamide and carbonyls affording 2,3-dihydroquinazolin-4(1H)-ones using aqueous solution of [C12Py][FeCl3Br]. The developed methodology was applied for the synthesis of 25 quinazolinone-triazole hybrids followed by evaluation of their in vitro anti-tubercular (TB) activity. The results revealed that 8 quinazolinone-triazole hybrids displayed promising activity having MIC values of 0.78-12.5 µg/mL. The compound 3if with MIC 0.78 µg/mL was found to be the lead nominee among the series, better than Ethambutol, a first line anti-TB drug and comparable with Rifampicin. The active compounds with MIC values ≤ 6.25 µg/mL were subjected to in vitro cytotoxicity and found nontoxic. In drug-drug interaction, compounds 3ia and 3ii interacted synergistically with all the three anti-TB drugs, INH, RFM, and EMB. Other 3 compounds interacted either in synergistic or additive manners. Important information on the binding interaction of the target compounds with the active sites of 1DQY Antigen 85C from Mycobacterium tuberculosis and Enoyl acyl carrier protein reductase (InhA) enzymes was obtained from molecular docking studies. Screening of the drug-likeness properties and bioactivity score indicates that synthesized molecules could be projected as potential drug candidates. Based on the current study, quinazolinone-triazole hybrids framework can be useful in drug development for TB.

3.
Comput Biol Chem ; 100: 107728, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35952423

ABSTRACT

The rich biodiversity of North East India is one of the recognized biodiversity hotspots of the world. This region comprises of eight states (Assam, Arunachal Pradesh, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, and Tripura) with diverse ethnic communities having invaluable traditional knowledge/practices, passed through genesis. The medicinal plants in this region are rich in natural products/phytochemicals and have been used extensively by pharmaceutical industries. The present study is an attempt to develop a comprehensive resource of the medicinal plants with a quantitative analysis of the phytochemicals which can enhance knowledge on therapeutic indications and contribute in drug discovery and development. The database is a collection of 561 unique plants comprising of 9225 phytochemicals. The physiochemical properties of the phytochemicals were analyzed using indigenous python scripts whereas for the ADMET properties, open access servers were used. The data available in NEI-MPDB will help to connect the cutting-edge approach of various research groups and will help to translate the information into economic wealth by the pharmaceutical industries. The database is openly accessible at https://neist.res.in/neimpdb/.


Subject(s)
Plants, Medicinal , Databases, Factual , Drug Discovery , India , Phytochemicals , Plants, Medicinal/chemistry
4.
ACS Omega ; 5(46): 29830-29837, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33251417

ABSTRACT

An efficient, green strategy for synthesis of 1,4-disubstituted-1,2,3-triazole has been developed using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) acetate ionic liquid (200 µL) under a solvent- and external base-free condition. This protocol is further applied for the synthesis of novel amino acid containing 1,2,3-triazole molecules, which were then evaluated for potential antitubercular and antibacterial activities. Cytotoxicity assay of the compounds was also performed. In silico analysis of the promising compounds selected through experimental analysis was thereafter performed for visualizing molecular interactions and predicting binding affinities between our synthesized molecules, which exhibited good activity in experimental studies and the DprE1 target protein of Mycobacterium tuberculosis. Durg-likeness studies also show potential of the synthesized molecules as drug candidates.

SELECTION OF CITATIONS
SEARCH DETAIL
...