Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(20)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37991159

ABSTRACT

We present the phase separation dynamics of a binary (AB), simple fluid (SF), and amphiphilic polymer (AP) mixture using dissipative particle dynamics simulation at d = 3. We study the effect of different AP topologies, including block copolymers, ring block copolymers (RCP), and miktoarm star polymers, on the evolution morphologies, dynamic scaling functions, and length scale of the AB mixture. Our results demonstrate that the presence of APs leads to significantly different evolution morphologies in SF. However, the deviation from dynamical scaling is prominent, mainly for RCP. Typically, the characteristic length scale for SF follows the power law R(t) ∼ tϕ, where ϕ is the growth exponent. In the presence of high AP, we observe diffusive growth (ϕ → 1/3) at early times, followed by saturation in length scale (ϕ → 0) at late times. The extent of saturation varies with constraints imposed on the APs, such as topology, composition ratio, chain length, and stiffness. At lower composition ratios, the system exhibits inertial hydrodynamic growth (ϕ → 2/3) at asymptotic times without clearly exhibiting the viscous hydrodynamic regime (ϕ → 1) at earlier times in our simulations. Our results firmly establish the existence of hydrodynamic growth regimes in low surfactant-influenced phase separation kinetics of binary fluids and settle the related ambiguity in d = 3 systems.

2.
Soft Matter ; 19(34): 6433-6445, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37403605

ABSTRACT

This paper investigates the phase separation kinetics of ternary fluid mixtures composed of a polymeric component (C) and two simple fluids (A and B) using dissipative particle dynamics simulations with a system dimensionality of d = 3. We model the affinities between the components to enable the settling of the polymeric component at the interface of fluids A and B. Thus, the system evolves to form polymer coated morphologies, enabling alteration of the fluids' interfacial properties. This manipulation can be utilized across various disciplines, such as the stabilization of emulsions and foams, rheological control, biomimetic design, and surface modification. We probe the effects of various parameters, such as the polymeric concentration, chain stiffness, and length, on the phase separation kinetics of the system. The simulation results show that changes in the concentration of flexible polymers exhibit perfect dynamic scaling for coated morphologies. The growth rate decreases as the polymeric composition is increased due to reduced surface tension and restricted connectivity between A- and B-rich clusters. Variations in the polymer chain rigidity at fixed composition ratios and degrees of polymerization slow the evolution kinetics of AB fluids marginally, although the effect is more pronounced for perfectly rigid chains. Whereas flexible polymer chain lengths at fixed composition ratios slow down the segregation kinetics of AB fluids slightly, varying the chain lengths of perfectly rigid polymers leads to a significant deviation in the length scale and dynamic scaling for the evolved coated morphologies. The characteristic length scale follows a power-law growth with a growth exponent ϕ that shows a crossover from the viscous to the inertial hydrodynamic regime, where the values of ϕ depend on the constraints imposed on the system.

SELECTION OF CITATIONS
SEARCH DETAIL
...