Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(5): e202301605, 2024 May.
Article in English | MEDLINE | ID: mdl-38488861

ABSTRACT

Curcumin conjugated heterocyclic compounds are potent candidates with drug likeness against various bacterial pathogens. A set of curcumin-based pyrrole conjugates (CPs) were synthesized and characterized by FT-IR, 1H and 13C NMR and HR-MS techniques. The results of free radical scavenging activity of the synthesized CPs, evaluated by FRAP and CUPRAC assays, showed the potency of these compounds as effective antioxidants. CP3 exhibits the highest antioxidant activity amongst the CPs. The bactericidal efficacy of CPs was screened against ESKAP bacterial pathogens, and CPs were found to possess better antibacterial property than curcumin, specifically against staphylococcus aureus bacteria. In addition, serum albumin (BSA and HSA) binding interaction of these CPs were determined by UV-visible and fluorescence spectrophotometric techniques. In-silico molecular docking study was performed to determine the binding patterns of molecular targets against Staphylococcus aureus tyrosyl tRNA synthetase, and serum albumin proteins. The structure-activity relationship showed that the presence of multiple phenolic hydroxyl groups, and electron withdrawing groups on the structure of CP molecule, enhances its antioxidant and antibacterial activity, respectively.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Curcumin , Drug Design , Microbial Sensitivity Tests , Molecular Docking Simulation , Pyrroles , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/chemical synthesis , Staphylococcus aureus/drug effects , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/chemical synthesis , Structure-Activity Relationship , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Humans , Molecular Structure , Tyrosine-tRNA Ligase/antagonists & inhibitors , Tyrosine-tRNA Ligase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...