Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol In Vitro ; 93: 105697, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37717640

ABSTRACT

Bisphenol S (BPS) and F (BPF), a new generation of bisphenols (BPs), are the main substitutes for bisphenol A (BPA). Both have been detected in human body fluids. Importantly, bisphenols are structurally similar to oestrogen, the main sex hormone in females. Because bisphenols bind to nuclear oestrogen receptors (ESR1 and ESR2) and to membrane G-coupled receptor 30 (GPR30), they can disrupt ovarian function. Here, we reveal the molecular mechanism underlying the effects of BPS and BPF on the cell cycle and steroidogenesis in the human ovarian granulosa cell (GC) line HGrC1. We show that BPS and BPF arrest GCs at the G0/G1 phase by inducing expression of cyclin D2, an important event that triggers maximal steroid synthesis in response to the BPS and BPF. We used pharmacological inhibitors to show that BPS and BPF, despite acting via already described pathways, also stimulate steroid secretion via IGF1R pathways in HGrC1 cells. Moreover, we identified differences critical to bisphenols response between normal (HGrC1) and primary tumour granulosa (COV434) cells, that enable COV434 cells to be more resistant to bisphenols. Overall, the data suggest that BPS and BPF drive steroidogenesis in human ovarian GCs by affecting the cell cycle. Furthermore, the results indicate that BPS and BPF act not only via the classical and non-classical ESR pathways, but also via the IGF1R pathway.


Subject(s)
Neoplasms , Receptors, Estrogen , Female , Humans , Cell Cycle , Steroids , Granulosa Cells , Benzhydryl Compounds/toxicity
2.
Endocrine ; 82(3): 681-694, 2023 12.
Article in English | MEDLINE | ID: mdl-37572199

ABSTRACT

PURPOSE: Steroid hormone secretion is one of the key functions of granulosa cells (GCs). Resveratrol is a natural polyphenol, known for its beneficial health effects, such as improving reproductive health. However, its application is limited due to poor bioavailability. The methoxy derivative of resveratrol (DMU-212) was demonstrated to be more lipophilic, and therefore of greater bioavailability. However, since the addition of methoxy groups to the stilbene scaffold was found to make the molecule insoluble in water, DMU-212 was loaded into liposomes. This study aimed to evaluate how the liposomal formulation of DMU-212 (lipDMU-212) alters estradiol and progesterone secretion of human ovarian GCs in a primary three-dimensional cell culture model. METHODS: DMU-212-loaded liposomes were prepared by thin film hydration followed by extrusion. Cell viability was measured after exposure of GCs spheroids to the liposomal formulation of DMU-212 using CellTiter-Glo® 3D Cell Viability Assay. The secretion of estradiol and progesterone was determined using commercial ELISA kits. RT-qPCR was conducted to analyze the expression of steroidogenesis-related genes. Finally, the western blot technique was used to analyze the effect of lipDMU-212 and FSH treatments on CYP11A1 and HSD3B1 protein levels. RESULTS: lipDMU-212 was found to significantly increase estradiol and progesterone secretion in a dose-dependent manner by enhancing the expression of CYP11A1, HSD3B1, StAR, CYP17A1, CYP19A1, and HSD17B1 genes. We have also shown that lipDMU-212, used alone and in combination with FSH, significantly increased the expression of the HSD3B1 and CYP11A1 proteins in GCs. Furthermore, our study suggests that lipDMU-212 increases FSH activity. CONCLUSIONS: This is the first study to describe the steroidogenic activity of liposomal formulation of DMU-212, possibly through increasing the StAR and CYP19A1 expression. These findings suggest that lipDMU-212 might have a beneficial effect in the treatment of disorders related to estrogen deficiency and hyperandrogenism, such as PCOS.


Subject(s)
Progesterone , Stilbenes , Female , Humans , Resveratrol/pharmacology , Resveratrol/metabolism , Progesterone/pharmacology , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Liposomes/metabolism , Liposomes/pharmacology , Stilbenes/pharmacology , Stilbenes/metabolism , Estradiol/pharmacology , Follicle Stimulating Hormone/metabolism , Granulosa Cells/metabolism , Multienzyme Complexes/metabolism , Multienzyme Complexes/pharmacology
3.
Reproduction ; 165(5): 521-531, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36880885

ABSTRACT

In brief: The role of visfatin in ovarian granulosa cell tumor (GCT) invasion and glucose metabolism reprogramming is largely unexplored. These studies imply that visfatin or its inhibitor is involved in regulating ovarian granuloma invasion by reprogramming glucose metabolism and may be a potential candidate for the diagnosis and treatment of ovarian GCT. Abstract: Visfatin is an adipokine with nicotinamide phosphoribosyltransferase (NAMPT) activity, the concentration of which is higher in ascitic fluid than in serum, and is associated with ovarian cancer peritoneal dissemination. Potentially important effects of visfatin on glucose metabolism have been previously reported. However, the mechanism underlying the effects of visfatin on ovarian cancer cell invasion, and whether this involves altered glucose metabolism, has not been elucidated. Here, we tested the hypothesis that visfatin, which can reprogram cancer metabolism, promotes invasion by ovarian cancer spheroids. Visfatin increased glucose transporter (GLUT)1 expression and glucose uptake in adult granulosa cell tumor-derived spheroid cells (KGN) and also increased the activities of hexokinase 2 and lactate dehydrogenase. We showed a visfatin-induced increase in glycolysis in KGN cells. Moreover, visfatin increased the potential invasiveness of KGN spheroid cells by upregulating MMP2 (matrix metalloproteinase 2) and downregulating CLDN3 and CLDN4 (claudin 3 and 4) gene expression. Interestingly, an inhibitor of GLUT1 and lactate dehydrogenase (LDHA) abolished the stimulatory effect of visfatin on the potential invasiveness of KGN cells. More importantly, silencing expression of the NAMPT gene in KGN cells demonstrated its important effect on glycolysis and invasiveness in adult granulosa cell tumor cells (AGCTs). In summary, visfatin appears to increase AGCT invasiveness through effects on glucose metabolism and to be an important regulator of glucose metabolism in these cells.


Subject(s)
Granulosa Cell Tumor , Ovarian Neoplasms , Female , Adult , Humans , Granulosa Cell Tumor/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/pharmacology , Matrix Metalloproteinase 2 , Ovarian Neoplasms/pathology , Glucose/pharmacology , Lactate Dehydrogenases
4.
Endocrine ; 80(2): 448-458, 2023 05.
Article in English | MEDLINE | ID: mdl-36658296

ABSTRACT

PURPOSE: Ovarian cancer is characterized by recurrent peritoneal and distant metastasis. To survive in a non-adherent state, floating ovarian cancer spheroids develop mechanisms to resist anoikis. Moreover, ascitic fluid from ovarian cancer patients contains high levels of visfatin with anti-apoptotic properties. However, the mechanism by which visfatin induces anoikis resistance in ovarian cancer spheroids remains unknown. Here, we aimed to assess wheather visfatin which possess anti-apoptotic properties can induce resistance of anoikis in ovarian cancer spheroids. METHODS: Visfatin synthesis were examined using a commercial human visfatin ELISA Kit. Spheroid were exposed to visfatin and cell viability and caspase 3/7 activity were measured using CellTiter-Glo 3D cell viability assay and Caspase-Glo® 3/7 Assay System. mRNA and protein expression were analyzed by Real-time PCR and Western Blot analysis, respectively. Analysis of mitochondrial activity was estimated by JC-1 staining. RESULTS: First, our results suggested higher expression and secretion of visfatin by epithelial than by granulosa ovarian cells, and in non-cancer tissues versus cancer tissues. Interestingly, visfatin increased the proliferation/apoptosis ratio in ovarian cancer spheroids. Specifically, both the intrinsic and extrinsic pathways of anoikis were regulated by visfatin. Moreover, the effect of the visfatin inhibitor (FK866) was opposite to that of visfatin. Furthermore, both NAMPT and FK866 affected mitochondrial activity in ovarian cancer cells. CONCLUSION: In conclusion, visfatin acts as an anti-apoptotic factor by regulating mitochondrial activity, leading to anoikis resistance in ovarian cancer spheroids. The finding suggest visfatin as a potential novel therapeutic target for the treatment of ovarian carcinoma with peritoneal dissemination.


Subject(s)
Anoikis , Nicotinamide Phosphoribosyltransferase , Ovarian Neoplasms , Female , Humans , Cell Line, Tumor , Nicotinamide Phosphoribosyltransferase/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology
5.
Toxicol Lett ; 375: 39-47, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36584861

ABSTRACT

Alterations in the metabolism of cancer cells are crucial for tumor growth and progression. However, the mechanism whereby environmental pollutants such as bisphenols F (BPF) and S (BPS) affect glucose metabolism through the glycolytic pathway, and therefore influence tumor progression, are unclear. Both bisphenols are endocrine-disrupting molecules that are used in plastics. As a consequence of their widespread use, these compounds have been detected in various human body fluids. Thus, hormone-sensitive cancers, such as ovarian cancers, are exposed to these compounds. In the present study, we aimed to determine the effects of the concentrations of BPS and BPF found in body fluids on the cell viability, glucose uptake, glycolysis, oxygen consumption, and invasion by the adult ovarian granulosa cell tumor (AGCT) cell line. We found that BPS and BPF increased the glucose uptake, hexokinase activity, proliferation, and invasion of the cells at environmentally relevant concentrations. Furthermore, we identified an inhibition of glycolysis in parallel with an increase in oxygen consumption, suggesting a BPS/BPF-induced switch from aerobic glycolysis to mitochondrial respiration. In summary, these findings demonstrate a new mechanism through which BPS and BPF promote ovarian granulosa cell tumor progression by increasing energy production through mitochondrial respiration. Thus, both bisphenols induced a metabolic switch that appears to be a stimulus for AGCT progression.


Subject(s)
Environmental Pollutants , Granulosa Cell Tumor , Adult , Female , Humans , Cell Line, Tumor , Granulosa Cells/metabolism , Benzhydryl Compounds/metabolism , Glucose
6.
Reprod Fertil Dev ; 35(3): 294-305, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36403477

ABSTRACT

CONTEXT: The destruction of granulosa cells (GCs), the main functional cell type in the ovary, prevents steroid hormone production, which in turn may damage oocytes, resulting in ovarian failure. The accumulation of a number of persistent organic pollutants (POPs) in the ovarian follicular fluid (FF) has been documented, which raises serious questions regarding their impact on female fertility. AIMS: We aimed to determine whether a mixture of POPs reflecting the profile found in FF influences mouse GCs or oocyte function and viability. METHODS: A mixture of POPs, comprising perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, polychlorinated biphenyl 153, and hexachlorobenzene, was used. In addition to using the exact concentration of POPs previously measured in human FF, we tested two other mixtures, one with10-fold lower and another with 10-fold higher concentrations of each POP. KEY RESULTS: Steroidogenesis was disrupted in GCs by the POP mixture, as demonstrated by lower oestradiol and progesterone secretion and greater lipid droplet accumulation. Furthermore, the POP mixture reduced GC viability and increased apoptosis, assessed using caspase-3 activity. The POP mixture significantly increased the number of oocytes that successfully progressed to the second meiotic metaphase and the oocyte reactive oxygen species (ROS) concentration. CONCLUSIONS: Thus, a mixture of POPs that are typically present in human FF has detrimental effects on ovarian function: it reduces the viability of GCs, and increases the oocyte concentrations of ROS. IMPLICATIONS: These results indicate that chronic exposure to POPs adversely affects female reproductive health.


Subject(s)
Environmental Pollutants , Persistent Organic Pollutants , Female , Animals , Humans , Mice , Reactive Oxygen Species/metabolism , Persistent Organic Pollutants/metabolism , Granulosa Cells/metabolism , Oocytes/metabolism , Environmental Pollutants/toxicity
7.
Reprod Toxicol ; 104: 114-124, 2021 09.
Article in English | MEDLINE | ID: mdl-34311058

ABSTRACT

Disruption of granulosa cells (GCs), the main functional cells in the ovary, is associated with impaired female fertility. Epidemiological studies demonstrated that women have detectable levels of organic pollutants (e.g., perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, polychlorinated biphenyl 153, and hexachlorobenzene) in their follicular fluid (FF), and thus these compounds may directly affect the function of GCs in the ovary. Considering that humans are exposed to multiple pollutants simultaneously, we elucidated the effects of a mixture of endocrine-disrupting chemicals (EDCs) on human granulosa HGrC1 cells. The EDC mixture directly increased progesterone secretion by upregulating 3ß-hydroxysteroid dehydrogenase (3ßHSD) expression. Furthermore, the EDC mixture increased activity of mitochondria, which are the central sites for steroid hormone biosynthesis, and the ATP content. Unexpectedly, the EDC mixture reduced glucose transporter 4 (GLUT4) expression and perturbed glucose uptake; however, this did not affect the glycolytic rate. Moreover, inhibition of GLUT1 by STF-31 did not alter the effects of the EDC mixture on steroid secretion but decreased basal estradiol secretion. Taken together, our results demonstrate that the mixture of EDCs present in FF can alter the functions of human GCs by disrupting steroidogenesis and may thus adversely affect female reproductive health. This study highlights that the EDC mixture elicits its effects by targeting mitochondria and increases mitochondrial network formation, mitochondrial activity, and expression of 3ßHSD, which is associated with the inner mitochondrial membrane.


Subject(s)
Follicular Fluid/metabolism , Persistent Organic Pollutants/metabolism , Progesterone/metabolism , Endocrine Disruptors/metabolism , Estradiol/metabolism , Female , Follicular Fluid/chemistry , Granulosa Cells/drug effects , Humans , Luteinization/drug effects , Mitochondria/drug effects , Ovarian Neoplasms , Persistent Organic Pollutants/toxicity , Steroids/metabolism , Up-Regulation/drug effects
8.
Toxicology ; 452: 152715, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33571556

ABSTRACT

Granulosa cell tumors (GCT) of the ovary have a good prognosis. Recurrence tends to be late; however, > 66 % of patients with recurrent GCT die from the disease. Most recurrences are abdominopelvic, although distant metastases have been documented. Here, we tested the hypothesis that a mixture of persistent endocrine-disrupting chemicals (EDCs) stimulates the invasion of GCT cells. We selected perfluorooctanoate (PFOA, 2 ng/mL), perfluorooctanesulfonate (PFOS, 8 ng/mL), 2,2-dichlorodiphenyldichloroethylene (p,p'-DDE, 1 ng/mL), polychlorinated biphenyl 153 (PCB153, 100 pg/mL), and hexachlorobenzene (HCB, 50 pg/mL), which have the highest measured concentrations in follicular fluid of women undergoing treatment with assisted reproductive technology. The human GCT cell lines COV434 and KGN have been used as in vitro models of juvenile (JGCT) and adult (AGCT) GCT subtypes, respectively. Cells were treated with a mixture of the test compounds for 15 min prior to analysis of protein phosphorylation; for 4 h prior to analysis in a circular chemorepellent-induced defect assay; for 6 h prior to analysis of matrix metalloproteinase 2 (MMP2) activity; for 24 h prior to analysis of migration, invasion, and gene expression; and for 48 h prior to analysis of protein expression. First, we showed that KGN cells migrated and exhibited invasive behavior. By contrast, COV434 cells lacked migration and invasion potential. Moreover, expression of mesenchymal genes and the gene encoding MMP2 was higher in KGN cells, and that of epithelial genes lower, than that in COV434 cells. Treatment of KGN cells with the EDC mixture stimulated cell migration, invasion, and lymphatic dissemination. The results suggest that the role of the EDC mixture in AGCT invasion is not related to changes in expression of epithelial and mesenchymal genes; rather, it is related to increased expression and activity of MMP2. Additionally, silencing insulin-like growth factor 1 (IGF1R) in AGCT abolished the stimulatory effect of the EDC mixture on KGN spheroid invasion. These results demonstrate that the EDC mixture increased KGN spheroid invasion by stimulating expression and activity of MMP2 via IGF1R.


Subject(s)
Gene Expression Regulation, Neoplastic , Granulosa Cell Tumor/metabolism , Matrix Metalloproteinase 2/biosynthesis , Persistent Organic Pollutants/toxicity , Receptor, IGF Type 1/biosynthesis , Spheroids, Cellular/metabolism , Cell Culture Techniques , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/physiology , Dose-Response Relationship, Drug , Female , Granulosa Cell Tumor/genetics , Granulosa Cell Tumor/pathology , Humans , Matrix Metalloproteinase 2/genetics , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Receptor, IGF Type 1/genetics , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Up-Regulation/drug effects , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...