Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Ophthalmol ; 108(4): 588-592, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38290805

ABSTRACT

OBJECTIVE: The objective of this study was to assess the efficacy of low-dose atropine 0.01% in controlling myopia progression among Indian children over a 2-year period. METHODS: This retrospective study, conducted across 20 centres in India, monitored the progression of myopia over 2 years after initiating treatment with 0.01% atropine eye drops. This included children between 6 and 14 years with baseline myopia ranging from -0.5 D to -6 D, astigmatism≤-1.5 D, anisometropia ≤ -1 D and documented myopia progression of ≥0.5 D in the year prior to starting atropine. Subjects with any other ocular pathologies were excluded. RESULTS: A total of 732 children were included in the data analysis. The mean age of the subjects was 9.3±2.7 years. The mean myopia progression at baseline (1 year before starting atropine) was -0.75±0.31 D. The rate of myopia progression was higher in younger subjects and those with higher baseline myopic error. After initiating atropine, myopia progression significantly decreased to -0.27±0.14 D at the end of the first year and -0.24±0.15 D at the end of the second year (p<0.001). Younger children (p<0.001) and higher baseline myopia (p<0.001) was associated with greater myopia progression and poor treatment response (p<0.001 for both). CONCLUSION: Low-dose atropine (0.01%) effectively reduces myopia progression over 2 years in Indian children.


Subject(s)
Atropine , Myopia , Child , Humans , Atropine/therapeutic use , Retrospective Studies , Disease Progression , Myopia/diagnosis , Myopia/drug therapy , Ophthalmic Solutions/therapeutic use , Refraction, Ocular , Mydriatics/therapeutic use
2.
Cornea ; 36(10): 1221-1226, 2017 10.
Article in English | MEDLINE | ID: mdl-28731878

ABSTRACT

PURPOSE: To assess the correlation between corneal biomechanical stiffness and refractive error (RE) in the pediatric population. METHODS: A total of 733 pediatric eyes were included in the study retrospectively. All eyes underwent corneal tomography (Pentacam), RE assessment, and air-puff deformation (Corvis-ST). Waveform analyses of deformation provided corneal stiffness (CS) and extraocular tissue stiffness (EOS). Eyes were subgrouped into emmetropia [manifest refraction spherical equivalent (MRSE) ∼ 0 D], hyperopia (MRSE > 0 D), myopia I (MRSE between 0 D and -3 D), myopia II (MRSE between -3 D and -6 D), and myopia III (MRSE greater than -6 D) for multivariate analyses. Ocular biometry variables [age, intraocular pressure (IOP), central corneal thickness (CCT), corneal astigmatism, anterior chamber depth, and RE] were used as covariates. The apparent elastic modulus (E) was defined as the ratio of CS and CCT. RESULTS: All groups had similar age, CCT, and IOP (P > 0.05). CS was the only parameter to differ between all the grades of myopia (P < 0.0001). CS was lower by 3.72%, 6.84%, and 10.68% in myopia I, II, and III eyes, respectively, relative to emmetropic eyes. EOS increased by 11.15%, 22.60%, and 28.5%, respectively. Multivariate regression revealed age, IOP, CCT, corneal astigmatism, anterior chamber depth, and RE as significant predictors of CS, with a high coefficient of regression (R = 0.66). Corneal E negatively correlated with the grade of myopia. CONCLUSIONS: CS and EOS correlated negatively and positively with the grade of myopia, respectively. Ocular biometry variables were significant predictors of both CS and EOS. The decrease in CS was attributed to that in elastic modulus.


Subject(s)
Cornea/physiology , Elasticity/physiology , Hyperopia/physiopathology , Myopia/physiopathology , Adolescent , Biomechanical Phenomena , Biometry , Child , Cross-Sectional Studies , Humans , Intraocular Pressure/physiology , Refraction, Ocular/physiology , Retrospective Studies , Visual Acuity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...