Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 54(6): 932-945, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24857551

ABSTRACT

Quiescence (G0) allows cycling cells to reversibly cease proliferation. A decision to enter quiescence is suspected of occurring early in G1, before the restriction point (R). Surprisingly, we have identified G2 as an interval during which inhibition of the protein phosphatase PP2A results in failure to exhibit stable quiescence. This effect is accompanied by shortening of the ensuing G1. The PP2A subcomplex required for stable G0 contains the B56γ B subunit. After PP2A inhibition in G2, aberrant overexpression of cyclin E occurs during mitosis and is responsible for overriding quiescence. Strikingly, suppression of Ras signaling re-establishes normal cyclin E levels during M and restores G0. These data point to PP2A-B56γ-driven Ras signaling modulation in G2 as essential for suppressing aberrant cyclin E expression during mitosis and thereby achieving normal G0 control. Thus, G2 is an interval during which the length and growth factor dependence of the next G1 interval are established.


Subject(s)
G1 Phase/genetics , G2 Phase/genetics , Oncogene Protein p21(ras)/genetics , Protein Phosphatase 2/genetics , Resting Phase, Cell Cycle/physiology , Cell Line , Cyclin E/biosynthesis , Humans , MCF-7 Cells , Mitosis/genetics , Protein Subunits/genetics , RNA Interference , RNA, Small Interfering , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...