Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
RSC Adv ; 13(9): 5619-5626, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36798744

ABSTRACT

The formation of interstitial PdC x nanoparticles (NPs) is investigated through DFT calculations. Insights on the mechanisms of carbidisation are obtained whilst the material's behaviour under conditions of increasing C-concentration is examined. Incorporation of C atoms in the Pd octahedral interstitial sites is occurring through the [111] facet with an activation energy barrier of 19.3-35.7 kJ mol-1 whilst migration through the [100] facet corresponds to higher activation energy barriers of 124.5-127.4 kJ mol-1. Furthermore, interstitial-type diffusion shows that C will preferentially migrate and reside at the octahedral interstitial sites in the subsurface region with limited mobility towards the core of the NP. For low C-concentrations, migration from the surface into the interstitial sites of the NPs is thermodynamically favored, resulting in the formation of interstitial carbide. Carbidisation reaction energies are exothermic up to 11-14% of C-concentration and slightly vary depending on the shape of the structure. The reaction mechanisms turn to endothermic for higher concentration levels showing that C will preferentially reside on the surface making the interstitial carbide formation unfavorable. As experimentally observed, our simulations confirm that there is a maximum concentration of C in Pd carbide NPs opening the way for further computational investigations on the activity of Pd carbides in directed catalysis.

2.
J Phys Chem C Nanomater Interfaces ; 125(50): 27578-27595, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34970379

ABSTRACT

The effect of the sulfation of zirconia catalysts on their structure, acidity/basicity, and catalytic activity/selectivity toward the ketonization of organic acids is investigated by a combined experimental and computational method. Here, we show that, upon sulfation, zirconia catalysts exhibit a significant increase in their Brønsted and Lewis acid strength, whereas their Lewis basicity is significantly reduced. Such changes in the interplay between acid-base sites result in an improvement of the selectivity toward the ketonization process, although the measured conversion rates show a significant drop. We report a detailed DFT investigation of the putative surface species on sulfated zirconia, including the possible formation of dimeric pyrosulfate (S2O7 2-) species. Our results show that the formation of such a dimeric system is an endothermic process, with energy barriers ranging between 60.0 and 70.0 kcal mol-1, and which is likely to occur only at high SO4 2- coverages (4 S/nm2), high temperatures, and dehydrating conditions. Conversely, the formation of monomeric species is expected at lower SO4 2- coverages, mild temperatures, and in the presence of water, which are the usual conditions experienced during the chemical upgrading of biofuels.

3.
ACS Catal ; 11(4): 2141-2149, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33643682

ABSTRACT

The utilization of operando spectroscopy has allowed us to watch the dynamic nature of supported metal nanoparticles. However, the realization that subtle changes to environmental conditions affect the form of the catalyst necessitates that we assess the structure of the catalyst across the reactant/product gradient that exists across a fixed bed reactor. In this study, we have performed spatial profiling of a Pd/Al2O3 catalyst during NH3 oxidation, simultaneously collecting mass spectrometry and X-ray absorption spectroscopy data at discrete axial positions along the length of the catalyst bed. The spatial analysis has provided unique insights into the structure-activity relationships that govern selective NH3 oxidation-(i) our data is consistent with the presence of PdN x after the spectroscopic signatures for bulk PdN x disappear and that there is a direct correlation to the presence of this structure and the selectivity toward N2; (ii) at high temperatures, ≥400 °C, we propose that there are two simultaneous reaction pathways-the oxidation of NH3 to NO x by PdO and the subsequent catalytic reduction of NO x by NH3 to produce N2. The results in this study confirm the structural and catalytic diversity that exists during catalysis and the need for such an understanding if improvements to important emission control technologies, such as the selective catalytic oxidation of NH3, are to be made.

4.
ACS Catal ; 8(9): 8255-8262, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30221029

ABSTRACT

The promotional effect of H2 on the oxidation of CO is of topical interest, and there is debate over whether this promotion is due to either thermal or chemical effects. As yet there is no definitive consensus in the literature. Combining spatially resolved mass spectrometry and X-ray absorption spectroscopy (XAS), we observe a specific environment of the active catalyst during CO oxidation, having the same specific local coordination of the Pd in both the absence and presence of H2. In combination with Temporal Analysis of Products (TAP), performed under isothermal conditions, a mechanistic insight into the promotional effect of H2 was found, providing clear evidence of nonthermal effects in the hydrogen-promoted oxidation of carbon monoxide. We have identified that H2 promotes the Langmuir-Hinshelwood mechanism, and we propose this is linked to the increased interaction of O with the Pd surface in the presence of H2. This combination of spatially resolved MS and XAS and TAP studies has provided previously unobserved insights into the nature of this promotional effect.

5.
Philos Trans A Math Phys Eng Sci ; 376(2110)2018 Jan 13.
Article in English | MEDLINE | ID: mdl-29175870

ABSTRACT

The combination of non-thermal plasma (NTP) with catalyst systems as an alternative technology to remove NOx emissions in the exhaust of lean-burn stationary and mobile sources is reviewed. Several factors, such as low exhaust gas temperatures (below 300°C), low selectivity to N2 and the presence of impurities, make current thermally activated technologies inefficient. Various hybrid plasma-catalyst systems have been examined and shown to have a synergistic effect on de-NOx efficiency when compared with NTP or catalyst-alone systems. The NTP is believed to form oxygenated species, such as aldehydes and nitrogen-containing organic species, and to convert NO to NO2, which improves the reduction efficiency of N2 during hydrocarbon-selective catalytic reduction reactions. The NTP has been used as a pretreatment to convert NO to its higher oxidation states such as NO2 to improve NOx reduction efficiency in the subsequent processes, e.g. NH3-selective catalytic reduction. It has been applied to the lean phase of the NOx storage to improve the adsorption capacity of the catalyst by conversion of NO to NO2 Alternatively, a catalyst with high adsorption capacity is chosen and the NTP is applied to the rich phase to improve the reduction activity of the catalyst at low temperature.This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

6.
Angew Chem Int Ed Engl ; 56(32): 9351-9355, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28623870

ABSTRACT

Three recurring hypotheses are often used to explain the effect of non-thermal plasmas (NTPs) on NTP catalytic hybrid reactions; namely, modification or heating of the catalyst or creation of new reaction pathways by plasma-produced species. NTP-assisted methane (CH4 ) oxidation over Pd/Al2 O3 was investigated by direct monitoring of the X-ray absorption fine structure of the catalyst, coupled with end-of-pipe mass spectrometry. This in situ study revealed that the catalyst did not undergo any significant structural changes under NTP conditions. However, the NTP did lead to an increase in the temperature of the Pd nanoparticles; although this temperature rise was insufficient to activate the thermal CH4 oxidation reaction. The contribution of a lower activation barrier alternative reaction pathway involving the formation of CH3 (g) from electron impact reactions is proposed.

7.
Angew Chem Int Ed Engl ; 56(20): 5579-5583, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28402590

ABSTRACT

Non-thermal plasma activation has been used to enable low-temperature water-gas shift over a Au/CeZrO4 catalyst. The activity obtained was comparable with that attained by heating the catalyst to 180 °C providing an opportunity for the hydrogen production to be obtained under conditions where the thermodynamic limitations are minimal. Using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), structural changes associated with the gold nanoparticles in the catalyst have been observed which are not found under thermal activation indicating a weakening of the Au-CO bond and a change in the mechanism of deactivation.

8.
Analyst ; 138(10): 2858-62, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23552570

ABSTRACT

This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 µm (O.D.) thermocouple has been inserted in a 250 µm (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.


Subject(s)
Carbon Dioxide/chemical synthesis , Carbon Monoxide/chemistry , Temperature , Aluminum Oxide/chemistry , Carbon Dioxide/chemistry , Catalysis , Mass Spectrometry/instrumentation , Platinum/chemistry
10.
Analyst ; 136(1): 155-63, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-20890541

ABSTRACT

A Time of flight (ToF) mass spectrometer suitable in terms of sensitivity, detector response and time resolution, for application in fast transient Temporal Analysis of Products (TAP) kinetic catalyst characterization is reported. Technical difficulties associated with such application as well as the solutions implemented in terms of adaptations of the ToF apparatus are discussed. The performance of the ToF was validated and the full linearity of the specific detector over the full dynamic range was explored in order to ensure its applicability for the TAP application. The reported TAP-ToF setup is the first system that achieves the high level of sensitivity allowing monitoring of the full 0-200 AMU range simultaneously with sub-millisecond time resolution. In this new setup, the high sensitivity allows the use of low intensity pulses ensuring that transport through the reactor occurs in the Knudsen diffusion regime and that the data can, therefore, be fully analysed using the reported theoretical TAP models and data processing.

11.
Analyst ; 135(9): 2260-72, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20697617

ABSTRACT

Monolithic catalysts are widely used as structured catalysts, especially in the abatement of pollutants. Probing what happens inside these monoliths during operation is, therefore, vital for modelling and prediction of the catalyst behavior. SpaciMS is a spatially resolved capillary-inlet mass spectroscopy system allowing for the generation of spatially resolved maps of the reactions within monoliths. In this study SpaciMS results combined with 3D CFD modelling demonstrate that SpaciMS is a highly sensitive and minimally invasive technique that can provide reaction maps as well as catalytic temporal behavior. Herein we illustrate this by examining kinetic oscillations during a CO oxidation reaction over a Pt/Rh on alumina catalyst supported on a cordierite monolith. These oscillations were only observed within the monolith by SpaciMS between 30 and 90% CO conversion. Equivalent experiments performed in a plug-flow reactor using this catalyst in a crushed form over a similar range of reaction conditions did not display any oscillations demonstrating the importance of intra monolith analysis. This work demonstrates that the SpaciMS offers an accurate and comprehensive picture of structured catalysts under operation.

12.
Chem Commun (Camb) ; (32): 4889-91, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19652815

ABSTRACT

Isolated cationic gold deposited on sulfated lanthanum oxide has been shown to exhibit remarkable stability opening a promising way of stabilising ionic gold for catalytic reactions.

13.
J Am Chem Soc ; 131(20): 6973-5, 2009 May 27.
Article in English | MEDLINE | ID: mdl-19405467

ABSTRACT

The active site in supported gold catalysts for the carbonylation of methanol has been identified as dimers/trimers of gold which are formed from large gold particles >10 nm in diameter. Methyl iodide was found to be critical for this dispersion process and to maintain the catalyst in the active form. This study also shows that it may be possible to redisperse gold catalysts, in general, after reaction.

14.
Dalton Trans ; (12): 2235-40, 2009 Mar 28.
Article in English | MEDLINE | ID: mdl-19274303

ABSTRACT

Dodecatungsto-silicic H(4)SiW(12)O(40) and -phosphoric acids H(3)PW(12)O(40) were deposited on silica by a classical impregnation technique. The resulting materials were studied by in situ Raman and infrared spectroscopy, XPS and by solid-state (1)H MAS NMR as a function of their dehydroxylation temperature. The data show that in the case of H(3)PW(12)O(40) three silanol groups are protonated while in the case of H(4)SiW(12)O(40) at least one acidic proton remains. Upon heating this proton reacts leading to a disordered structure and a broadening of the W-O Raman bands.

15.
Chem Commun (Camb) ; (14): 1636-7, 2004 Jul 21.
Article in English | MEDLINE | ID: mdl-15263955

ABSTRACT

The formation and reactivity of surface intermediates in the reverse water-gas-shift reaction on a Pt/CeO2 catalyst are critically dependent on the reaction conditions so that conclusions regarding the reaction mechanism cannot be inferred using ex operando conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...