Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mass Spectrom ; 56(4): e4632, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32767485

ABSTRACT

Investigation of two common explosives such as cyclonite (RDX) and cyclotetramethylenetetranitramine (HMX) using a mass spectrometer with ultrahigh resolution and accuracy has not been comprehensively performed. Here, ultrahigh mass accuracy 15-T Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) spectra were utilized to comprehensively characterize the adduct ions of RDX and HMX. Two different ionization sources such as a conventional electrospray ionization (ESI) source and a chip-based static nano-ESI source were used to investigate the adduct ions of RDX and HMX. The ESI-MS analyses of two explosives in negative ion mode provide some adduct ions of RDX and HMX even without prior addition of their corresponding anions. A total of six types of adduct ion were characterized: [M + Cl]- , [M + HCOO]- , [M + NO2 ]- , [M + CH3 COO]- , [M + NO3 ]- , and [M + C3 H5 O3 ]- , where M is either RDX or HMX. The ultrahigh accuracy of the 15-T FT-ICR MS was utilized to distinguish two closely spaced peaks representing the monoisotopic [M + NO2 ]- and second isotopic [M + HCOO]- ions, thereby enabling the discovery of a [M + NO2 ]- adduct ion in the ESI analysis of RDX or HMX. [M + NO2 ]- and [M + CH3 COO]- adduct ions were only observed when using a static nano-ESI source. It is the first report explaining the discovery of [M + NO2 ]- adduct ion in the ESI-MS analyses of RDX and HMX.

2.
J Phys Chem A ; 120(24): 4249-55, 2016 Jun 23.
Article in English | MEDLINE | ID: mdl-27266258

ABSTRACT

We have studied molecular structures and kinetic stabilities of M(N5)3 (M = Sc, Y) and M(N5)4 (M = Ti, Zr, Hf) complexes theoretically. All of these compounds are found to be stable with more than a 13 kcal/mol of kinetic barrier. In particular, Ti(N5)4 showed the largest dissociation energy of 173.0 kcal/mol and thermodynamic stability. This complex had a high nitrogen content (85% by weight), and a significantly high nitrogen to metal ratio (20:1) among the neutral M(N5)n species studied here and in the literature. Ti(N5)4 is thus forecasted to be a good candidate for a nitrogen-rich high-energy density material (HEDM). We reveal in further detail using ab initio molecular dynamics simulations that the dissociation pathways of M(N5)n involve the rearrangements of the bonding configurations before dissociation.

3.
Talanta ; 120: 64-70, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24468343

ABSTRACT

Corona discharge ionization combined with ion mobility spectrometry-mass spectrometry (IMS-MS) was utilized to investigate five common explosives: cyclonite (RDX), trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotetramethylenetetranitramine (HMX), and 2,4-dinitrotoluene (DNT). The MS scan and the selected ion IMS analyses confirmed the identities of the existing ion species and their drift times. The ions observed were RDX·NO3(-), TNT(-), PETN·NO3(-), HMX·NO3(-), and DNT(-), with average drift times of 6.93 ms, 10.20 ms, 9.15 ms, 12.24 ms, 11.30 ms, and 8.89 ms, respectively. The reduced ion mobility values, determined from a standard curve calculated by linear regression of (normalized drift times)(-1) versus literature K0 values, were 2.09, 1.38, 1.55, 1.15, 1.25, and 1.60 cm(2) V(-1) s(-1), respectively. The detection limits were found to be 0.1 ng for RDX, 10 ng for TNT, 0.5 ng for PETN, 5.0 ng for HMX, and 10 ng for DNT. Simplified chromatograms were observed when nitrogen, as opposed to air, was used as the drift gas, but the detection limits were approximately 10 times worse (i.e., less sensitivity of detection).


Subject(s)
Explosive Agents/analysis , Mass Spectrometry/methods , Azocines/analysis , Dinitrobenzenes/analysis , Ions/analysis , Limit of Detection , Pentaerythritol Tetranitrate/analysis , Triazines/analysis , Trinitrotoluene/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...