Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(5)2024 May 12.
Article in English | MEDLINE | ID: mdl-38792801

ABSTRACT

Antibiotic resistance is a global health crisis. Notably, carbapenem-resistant Enterobacterales (CRE) pose a significant clinical challenge due to the limited effective treatment options. This problem is exacerbated by persisters that develop upon antibiotic exposure. Bacteria persisters can tolerate high antibiotic doses and can cause recalcitrant infections, potentially developing further antibiotic resistance. Iron is a critical micronutrient for survival. We aimed to evaluate the utility of iron chelators, alone and in combination with antibiotics, in managing persisters. We hypothesized that iron chelators eradicate CRE persisters in vitro, when administered in combination with antibiotics. Our screening revealed three clinical isolates with bacteria persisters that resuscitated upon antibiotic removal. These isolates were treated with both meropenem and an iron chelator (deferoxamine mesylate, deferiprone or dexrazoxane) over 24 h. Against our hypothesis, bacteria persisters survived and resuscitated upon withdrawing both the antibiotic and iron chelator. Pursuing our aim, we next hypothesized that iron chelation is feasible as a post-antibiotic treatment in managing and suppressing persisters' resuscitation. We exposed bacteria persisters to an iron chelator without antibiotics. Flow cytometric assessments revealed that iron chelators are inconsistent in suppressing persister resuscitation. Collectively, these results suggest that the iron chelation strategy may not be useful as an antibiotic adjunct to target planktonic bacteria persisters.

2.
Microorganisms ; 8(10)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998347

ABSTRACT

Traditional in vitro time-kill studies (TKSs) require viable plating, which is tedious and time-consuming. We used ATP bioluminescence, with the removal of extracellular ATP (EC-ATP), as a surrogate for viable plating in TKSs against carbapenem-resistant Gram-negative bacteria (CR-GNB). Twenty-four-hour TKSs were conducted using eight clinical CR-GNB (two Escherichia coli, two Klebsiella spp., two Acinetobacter baumannii, two Pseudomonas aeruginosa) with multiple single and two-antibiotic combinations. ATP bioluminescence and viable counts were determined at each timepoint (0, 2, 4, 8, 24 h), with and without apyrase treatment. Correlation between ATP bioluminescence and viable counts was determined for apyrase-treated and non-apyrase-treated samples. Receiver operator characteristic curves were plotted to determine the optimal luminescence threshold to discriminate between inhibitory/non-inhibitory and bactericidal/non-bactericidal combinations, compared to viable counts. After treatment of bacteria with 2 U/mL apyrase for 15 min at 37 °C, correlation to viable counts was significantly higher compared to untreated samples (p < 0.01). Predictive accuracies of ATP bioluminescence were also significantly higher for apyrase-treated samples in distinguishing inhibitory (p < 0.01) and bactericidal (p = 0.03) combinations against CR-GNB compared to untreated samples, when all species were collectively analyzed. We found that ATP bioluminescence can potentially replace viable plating in TKS. Our assay also has applications in in vitro and in vivo infection models.

SELECTION OF CITATIONS
SEARCH DETAIL
...