Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Chem Inf Model ; 54(11): 3238-50, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25317974

ABSTRACT

Phosphoinositide 3-kinases (PI3Ks) and the mammalian target of rapamycin (mTOR) act as critical effectors in a commonly deregulated cell signaling pathway in human cancers. The abnormal activation of the PI3K/mTOR pathway has been shown to play a role in initiation, progression, and metastasis of human tumors. Being one of the most frequently activated pathways in cancer, much effort has been directed toward inhibition of the PI3K/mTOR pathway as a novel oncology therapy. Previous work by a number of groups has revealed several selective PI3K and dual mTOR/PI3K inhibitors. However, there are few reports of therapeutic agents with a pan-PI3K/mTOR inhibitory profile within a narrow concentration range. We therefore initiated a drug discovery project with the aim of discovering dual mTOR/PI3K inhibitors which would equipotently inhibit the 4 isoforms of PI3K, α, ß, γ, and δ, and mTOR a compelling profile for powerful blockage of the PI3K/mTOR pathway. A pharmacophore model was generated and used for designing a series of novel compounds, based on a purine scaffold, which potently inhibited mTOR and PI3Ks. These compounds contained a phenol headgroup essential for binding to the target proteins. Early efforts concentrated on finding replacements for the phenol as it was rapidly conjugated resulting in a short half-life in vivo. Compounds with a variety of headgroups were docked into the PI3Kα and mTOR ATP-binding sites, and aminopyrimidine and aminopyrazine were found to make excellent phenol replacements. Further structure guided optimization of side chains in the 8- and 9-positions of the purine resulted in potent inhibitors with good PKDM properties. As the PI3 kinases play a role in insulin signaling, it is believed that targeting mTOR selectively may give the benefit of blocking the AKT-pathway while avoiding the potential side effects associated with PI3K inhibition. As a result we designed a further series of selective mTOR kinase inhibitors. The project was successfully concluded by progressing both a dual mTOR/PI3K inhibitor, SB2343, and a selective mTOR inhibitor, SB2602, into preclinical development. SB2343 has since entered phase 1 clinical development as VS-5584.


Subject(s)
Azabicyclo Compounds/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Morpholines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Purines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Azabicyclo Compounds/metabolism , Enzyme Inhibitors/metabolism , Humans , Ligands , Molecular Docking Simulation , Molecular Sequence Data , Morpholines/metabolism , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Protein Conformation , Purines/metabolism , TOR Serine-Threonine Kinases/chemistry , TOR Serine-Threonine Kinases/metabolism
2.
Mol Cancer Ther ; 12(2): 151-61, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23270925

ABSTRACT

Dysregulation of the PI3K/mTOR pathway, either through amplifications, deletions, or as a direct result of mutations, has been closely linked to the development and progression of a wide range of cancers. Moreover, this pathway activation is a poor prognostic marker for many tumor types and confers resistance to various cancer therapies. Here, we describe VS-5584, a novel, low-molecular weight compound with equivalent potent activity against mTOR (IC(50) = 37 nmol/L) and all class I phosphoinositide 3-kinase (PI3K) isoforms IC(50): PI3Kα = 16 nmol/L; PI3Kß = 68 nmol/L; PI3Kγ = 25 nmol/L; PI3Kδ = 42 nmol/L, without relevant activity on 400 lipid and protein kinases. VS-5584 shows robust modulation of cellular PI3K/mTOR pathways, inhibiting phosphorylation of substrates downstream of PI3K and mTORC1/2. A large human cancer cell line panel screen (436 lines) revealed broad antiproliferative sensitivity and that cells harboring mutations in PI3KCA are generally more sensitive toward VS-5584 treatment. VS-5584 exhibits favorable pharmacokinetic properties after oral dosing in mice and is well tolerated. VS-5584 induces long-lasting and dose-dependent inhibition of PI3K/mTOR signaling in tumor tissue, leading to tumor growth inhibition in various rapalog-sensitive and -resistant human xenograft models. Furthermore, VS-5584 is synergistic with an EGF receptor inhibitor in a gastric tumor model. The unique selectivity profile and favorable pharmacologic and pharmaceutical properties of VS-5584 and its efficacy in a wide range of human tumor models supports further investigations of VS-5584 in clinical trials.


Subject(s)
Morpholines/pharmacology , Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/enzymology , Disease Models, Animal , Female , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/enzymology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, SCID , Morpholines/adverse effects , Morpholines/pharmacokinetics , Neoplasms/enzymology , PTEN Phosphohydrolase/deficiency , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Purines/adverse effects , Purines/pharmacokinetics , Signal Transduction , Xenograft Model Antitumor Assays
3.
J Mol Model ; 19(1): 119-30, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22820730

ABSTRACT

A high-throughput screen against Aurora A kinase revealed several promising submicromolar pyrimidine-aniline leads. The bioactive conformation found by docking these leads into the Aurora A ATP-binding site had a semicircular shape. Macrocycle formation was proposed to achieve novelty and selectivity via ring-closing metathesis of a diene precursor. The nature of the optimal linker and its size was directed by docking. In a kinase panel screen, selected macrocycles were active on other kinase targets, mainly FLT3, JAK2, and CDKs. These compounds then became leads in a CDK/FLT3/JAK2 inhibitor project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. Interaction with this residue explains the observed selectivity. The Asp86 residue is conserved in most CDKs, resulting in potent pan-CDK inhibition by these compounds. Optimized macrocycles generally have good DMPK properties, and are efficacious in mouse models of cancer. Compound 5 (SB1317/TG02), a pan-CDK/FLT3/JAK2 inhibitor, was selected for preclinical development, and is now in phase 1 clinical trials.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Design , Heterocyclic Compounds, 4 or More Rings/pharmacology , Janus Kinase 2/antagonists & inhibitors , Nitrogen/chemistry , Protein Kinase Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Cyclin-Dependent Kinases/metabolism , Heterocyclic Compounds, 4 or More Rings/chemistry , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Janus Kinase 2/metabolism , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Mice , Models, Molecular , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , fms-Like Tyrosine Kinase 3/metabolism
4.
J Immunol ; 189(8): 4123-34, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22962687

ABSTRACT

SB1578 is a novel, orally bioavailable JAK2 inhibitor with specificity for JAK2 within the JAK family and also potent activity against FLT3 and c-Fms. These three tyrosine kinases play a pivotal role in activation of pathways that underlie the pathogenesis of rheumatoid arthritis. SB1578 blocks the activation of these kinases and their downstream signaling in pertinent cells, leading to inhibition of pathological cellular responses. The biochemical and cellular activities of SB1578 translate into its high efficacy in two rodent models of arthritis. SB1578 not only prevents the onset of arthritis but is also potent in treating established disease in collagen-induced arthritis mice with beneficial effects on histopathological parameters of bone resorption and cartilage damage. SB1578 abrogates the inflammatory response and prevents the infiltration of macrophages and neutrophils into affected joints. It also leads to inhibition of Ag-presenting dendritic cells and inhibits the autoimmune component of the disease. In summary, SB1578 has a unique kinase spectrum, and its pharmacological profile provides a strong rationale for the ongoing clinical development in autoimmune diseases.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Janus Kinase 2/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Disease Models, Animal , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Inbred Lew
6.
J Comput Aided Mol Des ; 26(4): 437-50, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22527961

ABSTRACT

Macrocycles from our Aurora project were screened in a kinase panel and were found to be active on other kinase targets, mainly JAKs, FLT3 and CDKs. Subsequently these compounds became leads in our JAK2 project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. This residue is conserved in most CDKs resulting in potent pan CDK inhibition. One of the main project objectives was to achieve JAK2 potency with 100-fold selectivity against CDKs. Macrocycles with an ether linker have potent JAK2 activity with the ether oxygen forming a hydrogen bond to Ser936. A hydrogen bond to the equivalent residues of JAK3 and most CDKs cannot be formed resulting in good selectivity for JAK2 over JAK3 and CDKs. Further optimization of the macrocyclic linker and side chain increased JAK2 and FLT3 activity as well as improving DMPK properties. The selective JAK2/FLT3 inhibitor 11 (Pacritinib, SB1518) has successfully finished phase 2 clinical trials for myelofibrosis and lymphoma. Another selective JAK2/FLT3 inhibitor, 33 (SB1578), has entered phase 1 clinical development for the non-oncology indication rheumatoid arthritis.


Subject(s)
Bridged-Ring Compounds/chemistry , Drug Design , Heterocyclic Compounds, 4 or More Rings/chemistry , Oxygen/chemistry , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Amino Acid Sequence , Bridged-Ring Compounds/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Janus Kinase 2/antagonists & inhibitors , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Sequence Homology, Amino Acid , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
7.
Bioorg Med Chem Lett ; 22(8): 2880-4, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22437109

ABSTRACT

A series of 2-anilino substituted 4-aryl-8H-purines were prepared as potent inhibitors of PDK1, a serine-threonine kinase thought to play a role in the PI3K/Akt signaling pathway, a key mediator of cancer cell growth, survival and tumorigenesis. The synthesis, SAR and ADME properties of this series of compounds are discussed culminating in the discovery of compound 6 which possessed sub-micromolar cell proliferation activity and 65% oral bioavailability in mice.


Subject(s)
Aniline Compounds/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Purines/chemistry , Small Molecule Libraries/chemistry , Aniline Compounds/pharmacology , Animals , Cell Line, Tumor , Cells, Cultured , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Mice , Molecular Structure , Purines/pharmacology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Small Molecule Libraries/pharmacology , Solubility
8.
Drug Metab Lett ; 6(1): 33-42, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22372550

ABSTRACT

SB1317 (TG02) is a novel small molecule potent CDK/JAK2/FLT3 inhibitor. To evaluate full potential of this development candidate, we conducted drug metabolism and pharmacokinetic studies of this novel anti-cancer agent. SB1317 was soluble, highly permeable in Caco-2 cells, and showed > 99% binding to plasma from mice, dog and humans. It was metabolically stable in human and dog liver microsomes relative to mouse and rat. SB1317 was mainly metabolized by CYP3A4 and CY1A2 in vitro. SB1317 did not inhibit any of the major human CYPs in vitro except CYP2D6 (IC50=1 µM). SB1317 did not significantly induce CYP1A and CYP3A4 in human hepatocytes in vitro. The metabolic profiles in liver microsomes from preclinical species were qualitatively similar to humans. In pharmacokinetic studies SB1317 showed moderate to high systemic clearance (relative to liver blood flow), high volume of distribution ( > 0.6 L/kg), oral bioavailability of 24%, ∼ 4 and 37% in mice, rats and dogs, respectively; and extensive tissue distribution in mice. The favorable ADME of SB1317 supported its preclinical development as an oral drug candidate.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Hepatocytes/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Microsomes, Liver/metabolism , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Biological Availability , Caco-2 Cells , Cyclin-Dependent Kinases/antagonists & inhibitors , Cytochrome P-450 Enzyme System/drug effects , Cytochrome P-450 Enzyme System/metabolism , Dogs , Female , Hepatocytes/enzymology , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Inhibitory Concentration 50 , Janus Kinase 2/antagonists & inhibitors , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Rats , Rats, Wistar , Species Specificity , Tissue Distribution , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
9.
J Med Chem ; 55(6): 2623-40, 2012 Mar 22.
Article in English | MEDLINE | ID: mdl-22339472

ABSTRACT

Herein, we describe the synthesis and SAR of a series of small molecule macrocycles that selectively inhibit JAK2 kinase within the JAK family and FLT3 kinase. Following a multiparameter optimization of a key aryl ring of the previously described SB1518 (pacritinib), the highly soluble 14l was selected as the optimal compound. Oral efficacy in the murine collagen-induced arthritis (CIA) model for rheumatoid arthritis (RA) supported 14l as a potential treatment for autoimmune diseases and inflammatory disorders such as psoriasis and RA. Compound 14l (SB1578) was progressed into development and is currently undergoing phase 1 clinical trials in healthy volunteers.


Subject(s)
Antirheumatic Agents/chemical synthesis , Arthritis, Rheumatoid/drug therapy , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Janus Kinase 2/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antirheumatic Agents/pharmacokinetics , Antirheumatic Agents/pharmacology , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Cell Line , Cell Membrane Permeability , Collagen Type II , Dogs , Female , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Janus Kinase 2/physiology , Macaca mulatta , Male , Mice , Mice, Nude , Microsomes/metabolism , Models, Molecular , Rats , Signal Transduction/drug effects , Solubility , Stereoisomerism , Structure-Activity Relationship , TYK2 Kinase/antagonists & inhibitors
10.
J Med Chem ; 55(1): 169-96, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22148278

ABSTRACT

Herein, we describe the design, synthesis, and SAR of a series of unique small molecule macrocycles that show spectrum selective kinase inhibition of CDKs, JAK2, and FLT3. The most promising leads were assessed in vitro for their inhibition of cancer cell proliferation, solubility, CYP450 inhibition, and microsomal stability. This screening cascade revealed 26 h as a preferred compound with target IC(50) of 13, 73, and 56 nM for CDK2, JAK2 and FLT3, respectively. Pharmacokinetic (PK) studies of 26 h in preclinical species showed good oral exposures. Oral efficacy was observed in colon (HCT-116) and lymphoma (Ramos) xenograft studies, in line with the observed PK/PD correlation. 26h (SB1317/TG02) was progressed into development in 2010 and is currently undergoing phase 1 clinical trials in advanced leukemias and multiple myeloma.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cyclin-Dependent Kinases/antagonists & inhibitors , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Janus Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Computer Simulation , Dogs , Drug Screening Assays, Antitumor , Female , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/metabolism , Models, Molecular , Neoplasm Transplantation , Rats , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous
11.
J Med Chem ; 54(13): 4694-720, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21634430

ABSTRACT

A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Histone Deacetylase Inhibitors/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Biological Availability , Cell Line, Tumor , Dogs , Drug Screening Assays, Antitumor , Female , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylase Inhibitors/pharmacology , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/metabolism , Neoplasm Transplantation , Quantitative Structure-Activity Relationship , Rats , Rats, Wistar , Stereoisomerism
12.
J Med Chem ; 54(13): 4638-58, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21604762

ABSTRACT

Discovery of the activating mutation V617F in Janus Kinase 2 (JAK2(V617F)), a tyrosine kinase critically involved in receptor signaling, recently ignited interest in JAK2 inhibitor therapy as a treatment for myelofibrosis (MF). Herein, we describe the design and synthesis of a series of small molecule 4-aryl-2-aminopyrimidine macrocycles and their biological evaluation against the JAK family of kinase enzymes and FLT3. The most promising leads were assessed for their in vitro ADME properties culminating in the discovery of 21c, a potent JAK2 (IC(50) = 23 and 19 nM for JAK2(WT) and JAK2(V617F), respectively) and FLT3 (IC(50) = 22 nM) inhibitor with selectivity against JAK1 and JAK3 (IC(50) = 1280 and 520 nM, respectively). Further profiling of 21c in preclinical species and mouse xenograft and allograft models is described. Compound 21c (SB1518) was selected as a development candidate and progressed into clinical trials where it is currently in phase 2 for MF and lymphoma.


Subject(s)
Antineoplastic Agents/chemical synthesis , Bridged-Ring Compounds/chemical synthesis , Janus Kinase 2/antagonists & inhibitors , Lymphoma/drug therapy , Primary Myelofibrosis/drug therapy , Pyrimidines/chemical synthesis , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Adenosine Triphosphate/chemistry , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Binding Sites , Bridged-Ring Compounds/pharmacokinetics , Bridged-Ring Compounds/pharmacology , Cell Line, Tumor , Dogs , Drug Screening Assays, Antitumor , Humans , In Vitro Techniques , Mice , Mice, Nude , Microsomes, Liver/metabolism , Models, Molecular , Neoplasm Transplantation , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Solubility , Transplantation, Heterologous , Transplantation, Homologous
13.
Bioorg Med Chem Lett ; 20(11): 3314-21, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20451378

ABSTRACT

Thirty-six novel acylurea connected straight chain hydroxamates were designed and synthesized. Structure-activity relationships (SAR) were established for the length of linear chain linker and substitutions on the benzoylurea group. Compounds 5g, 5i, 5n, and 19 showed 10-20-fold enhanced HDAC1 potency compared to SAHA. In general, the cellular potency pIC(50) (COLO205) correlates with enzymatic potency pIC(50) (HDAC1). Compound 5b (SB207), a structurally simple and close analogue to SAHA, is more potent against HDAC1 and HDAC6 compared to the latter. As a representative example of this series, good in vitro enzymatic and cellular potency plus an excellent pharmacokinetic profile has translated into better efficacy than SAHA in both prostate cancer (PC3) and colon cancer (HCT116) xenograft models.


Subject(s)
Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Urea/pharmacology , Animals , Cell Line, Tumor , Histone Deacetylase Inhibitors/chemistry , Humans , Hydroxamic Acids/chemistry , Kinetics , Mice , Structure-Activity Relationship , Transplantation, Heterologous
14.
Mol Cancer Ther ; 9(3): 642-52, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20197387

ABSTRACT

Although clinical responses in liquid tumors and certain lymphomas have been reported, the clinical efficacy of histone deacetylase inhibitors in solid tumors has been limited. This may be in part due to the poor pharmacokinetic of these drugs, resulting in inadequate tumor concentrations of the drug. SB939 is a new hydroxamic acid based histone deacetylase inhibitor with improved physicochemical, pharmaceutical, and pharmacokinetic properties. In vitro, SB939 inhibits class I, II, and IV HDACs, with no effects on other zinc binding enzymes, and shows significant antiproliferative activity against a wide variety of tumor cell lines. It has very favorable pharmacokinetic properties after oral dosing in mice, with >4-fold increased bioavailability and 3.3-fold increased half-life over suberoylanilide hydroxamic acid (SAHA). In contrast to SAHA, SB939 accumulates in tumor tissue and induces a sustained inhibition of histone acetylation in tumor tissue. These excellent pharmacokinetic properties translated into a dose-dependent antitumor efficacy in a xenograft model of human colorectal cancer (HCT-116), with a tumor growth inhibition of 94% versus 48% for SAHA (both at maximum tolerated dose), and was also effective when given in different intermittent schedules. Furthermore, in APC(min) mice, a genetic mouse model of early-stage colon cancer, SB939 inhibited adenoma formation, hemocult scores, and increased hematocrit values more effectively than 5-fluorouracil. Emerging clinical data from phase I trials in cancer patients indicate that the pharmacokinetic and pharmacologic advantages of SB939 are translated to the clinic. The efficacy of SB939 reported here in two very different models of colorectal cancer warrants further investigation in patients.


Subject(s)
Colorectal Neoplasms/drug therapy , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/pharmacokinetics , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/pharmacokinetics , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Biological Availability , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , HCT116 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Treatment Outcome , Tumor Cells, Cultured , Vorinostat , Xenograft Model Antitumor Assays
15.
Bioorg Med Chem Lett ; 20(8): 2443-7, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20338758

ABSTRACT

A series of alkenyl indazoles were synthesized and evaluated in Aurora kinase enzyme assays. Several promising leads were optimized for selectivity towards Aurora B. Excellent binding affinity and good selectivity were achieved with optimized compounds in isolated Aurora subfamily assays.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Aurora Kinases , Drug Evaluation, Preclinical , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism
16.
J Comput Aided Mol Des ; 22(12): 897-906, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18574696

ABSTRACT

The Aurora family of serine/threonine kinases are mitotic regulators involved in centrosome duplication, formation of the bipolar mitotic spindle and the alignment of the chromosomes along the spindle. These proteins are frequently overexpressed in tumor cells as compared to normal cells and are therefore potential therapeutic oncology targets. An Aurora A high throughput screen revealed a promising sub-micromolar indazole-benzimidazole lead. Modification of the benzimidazole portion of the lead to a C2 linker with a phenyl ring was proposed to achieve novelty. Docking revealed that a conjugated linker was optimal and the resulting compounds were equipotent with the lead. Further structure-guided optimization of substituents on the 5 & 6 position of the indazole led to single digit nanomolar potency. The homology between the Aurora A & Aurora B kinase domains is 71% but their binding sites only differ at residues 212 & 217 (Aurora A numbering). However interactions with only the latter residue may be used for obtaining selectivity. An analysis of published Aurora A and Aurora B X-ray structures reveals subtle differences in the shape of the binding sites. This was exploited by introduction of appropriately sized substituents in the 4 & 6 position of the indazole leading to Aurora B selective inhibitors. Finally we calculate the conformational energy penalty of the putative bioactive conformation of our inhibitors and show that this property correlates well with the Aurora A binding affinity.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Aurora Kinases , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/pharmacology
17.
J Biomol Screen ; 11(8): 959-67, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17099246

ABSTRACT

The nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylase SIRT1 has been linked to fatty acid metabolism via suppression of peroxysome proliferator-activated receptor gamma (PPAR-gamma) and to inflammatory processes by deacetylating the transcription factor NF-kappaB. First, modulation of SIRT1 activity affects lipid accumulation in adipocytes, which has an impact on the etiology of a variety of human metabolic diseases such as obesity and insulin-resistant diabetes. Second, activation of SIRT1 suppresses inflammation via regulation of cytokine expression. Using high-throughput screening, the authors identified compounds with SIRT1 activating and inhibiting potential. The biological activity of these SIRT1-modulating compounds was confirmed in cell-based assays using mouse adipocytes, as well as human THP-1 monocytes. SIRT1 activators were found to be potent lipolytic agents, reducing the overall lipid content of fully differentiated NIH L1 adipocytes. In addition, the same compounds have anti-inflammatory properties, as became evident by the reduction of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). In contrast, a SIRT1 inhibitory compound showed a stimulatory activity on the differentiation of adipocytes, a feature often linked to insulin sensitization.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drug Evaluation, Preclinical/methods , Quinoxalines/chemistry , Sirtuins/metabolism , Animals , Binding Sites , Cell Line , Dose-Response Relationship, Drug , Down-Regulation , Humans , Insulin , Lipogenesis/drug effects , Mice , Molecular Structure , Sirtuin 1 , Sirtuins/agonists , Sirtuins/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...