Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 47(2): 632-44, 2008 Jan 21.
Article in English | MEDLINE | ID: mdl-18161967

ABSTRACT

The reaction of the 1,2,3,5-dithiadiazolyls (4-R-C(6)H(4)CN(2)S(2))(2) (R = Me, 2a; Cl, 2b; OMe, 2c; and CF3, 2d) and (3-NC-5-tBu-C(6)H(3)CN(2)S(2))(2) (2e) with [CpCr(CO)(3)](2) (Cp = eta(5)-C(5)H(5)) (1) at ambient temperature respectively yielded the complexes CpCr(CO)(2)(eta(2)-S(2)N(2)CC(6)H(4)R) (R = 4-Me, 3a; 4-Cl, 3b; 4-OMe, 3c; and 4-CF(3), 3d) and CpCr(CO)(2)(eta(2)-S(2)N(2)CC(6)H(3)-3-(CN)-5-(tBu)) (3e) in 35-72% yields. The complexes 3c and 3d were also synthesized via a salt metathesis method from the reaction of NaCpCr(CO)(3) (1B) and the 1,2,3,5-dithiadiazolium chlorides 4-R-C(60H(4)CN(2)S(2)Cl (R = OMe, 8c; CF(3), 8d) with much lower yields of 6 and 20%, respectively. The complexes were characterized spectroscopically and also by single-crystal X-ray diffraction analysis. Cyclic voltammetry experiments were conducted on 3a-e, EPR spectra were obtained of one-electron-reduced forms of 3a-e, and variable temperature 1H NMR studies were carried out on complex 3d. Hybrid DFT calculations were performed on the model system [CpCr(CO)(2)S(2)N(2)CH] and comparisons are made with the reported CpCr(CO)(2)(pi-allyl) complexes.

2.
Inorg Chem ; 46(4): 1440-50, 2007 Feb 19.
Article in English | MEDLINE | ID: mdl-17291128

ABSTRACT

The reaction of [Cp*RuCl2]2 (1; Cp* = eta5-C5Me5) with tetraalkyldithiuram disulfides (R2NC(S)SS(S)CNR2, R = Me, Et), isopropylxanthic disulfide ([iPrOC(S)S]2), and bis(thiophosphoryl) disulfide ([(iPrO)2P(S)S]2) led to the isolation of dark-red crystalline solids of Cp*RuIVCl2(eta2-dithiolate) complexes [dithiolate = S2CNR2, DTCR (2a, R = Me; 2b, R = Et), S2COiPr (3), and S2P(iPrO)2 (4)]. Dichlorido substitution in 2 and 3 with DTCEt and S2COiPr anions yielded RuIV derivatives containing bis(DTC) and mixed DTC-dithiocarbonate ligands. These are the first organoruthenium complexes of such ligands. The reaction of monophosphines with 2a resulted in monochlorido substitution, whereas the analogous reaction with 3 resulted in displacement of both chlorido ligands and reduction of the metal center to RuII. Reduction at Ru was also observed in the reaction of 2a with [CpCr(CO)3]2. Of these complexes, only 2 and 3 are air-stable in the solid state for an extended period. All of the complexes have been spectrally characterized, and selected compounds are also crystallographically characterized.

3.
Chem Commun (Camb) ; (45): 4735-7, 2006 Dec 07.
Article in English | MEDLINE | ID: mdl-17109053

ABSTRACT

The title heterocyclic radicals coordinate to either 17e CpCr(CO)3 or 15e CpCr(CO)2 moieties as one-electron or as three-electron donors, respectively; in the former the bonding is via the perpendicular p orbital of the sulfur atom, while in the latter bonding is via p(pi) orbitals on both sulfur and nitrogen.

5.
Acc Chem Res ; 39(5): 301-13, 2006 May.
Article in English | MEDLINE | ID: mdl-16700529

ABSTRACT

The reactivity features of [Cp*Ru(III){eta(3)-tpdt)}] (7) and [(HMB)Ru(II)(eta(3)-tpdt)] (10) {Cp* = eta(5)-C(5)Me(5); HMB = eta(6)-C(6)Me(6); tpdt = 3-thiapentane-1,5-dithiolate, S(CH(2)CH(2)S(-))(2)} are presented, together with selected aspects of their (eta(3)-apdt) analogues 8 and 11 {apdt = 3-azapentane-1,5-dithiolate, HN(CH(2)CH(2)S(-))(2)}. This account will highlight the differences observed in their reactions with metal fragments of compounds of Ru and groups 10 and 11 in various coordination environments and with alkylating agents, including alpha,omega-dibromoalkanes. The mechanistic pathway of the alkylation of 7 will be discussed in some detail.

6.
Inorg Chem ; 44(15): 5229-40, 2005 Jul 25.
Article in English | MEDLINE | ID: mdl-16022520

ABSTRACT

The interactions of the benzothiazolate complex, CpCr(CO)(2)(SCSN(C(6)H(4))) (2), and the tetrazole thiolate complex, CpCr(CO)(3)(eta(1)-SCN(4)Ph) (3), with controlled amounts of Me(3)OBF(4) and (MeO)(2)SO(2), respectively, produced the corresponding mu(3)-oxo trinuclear thionate-bridged complexes, [Cp(3)Cr(3)(mu(2)-OH)(mu(3)-O)(mu(2)-eta(2)-SCSN(C(6)H(4)))(2)](5)BF(4) (45%) and [Cp(3)Cr(3)(mu(2)-OH)(mu(3)-O)(mu(2)-eta(2)-SCN(4)Ph)(2)](9)(MeOSO(3)) (53%), together with their respective free dimethylated thiolate ligands, [MeSCSNMe(C(6)H(4))](4)BF(4) and (Me(2)SCN(4)Ph)(8)MeOSO(3). The reaction of 3 with Me(3)OBF(4) resulted in the isolation of a binuclear complex, [Cp(2)Cr(2)(mu-OH)(mu-eta(2)-SCN(4)Ph)(2)](7)BF(4) (43%), and (8)BF(4) (27%). The reaction of the thiopyridine complex, CpCr(CO)(2)(SPy) (4), with I(2) also produced a similar mu(3)-oxo complex 10 (31%), together with CpCrI(2)(THF) (11) and the disulfide (SPy)(2). Similar reactions with 2 and 3 and I(2) yielded species 5 and 7, together with 11 and disulfides derived from their respective ligands. Cyclic voltammograms recorded in solutions of 5 and 9 indicated that the compounds could be reduced and oxidized at very similar potentials. An EPR spectrum characteristic of a compound with axial symmetry was obtained for 9 at 7 K. Single-crystal X-ray diffraction analyses confirmed that species 7 is dinuclear, whereas 5 and 9 are structural trinuclear analogues, each containing a mu(3)-oxo central core.


Subject(s)
Chromium/chemistry , Heterocyclic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Oxygen/chemistry , Sulfur Compounds/chemistry , Crystallography, X-Ray , Cyclopentanes/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/classification , Ligands , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemistry , Sulfur Compounds/chemical synthesis , Sulfur Compounds/classification
7.
Acc Chem Res ; 37(3): 187-99, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15023086

ABSTRACT

The reactivity of the cyclopentadienylchromium tricarbonyl dimer [CpCr(CO)3]2 (Cp = C5H5, 1) toward several classes of organo-P-, -S- and -N-compounds will be described. The organic substrates include the following: (i) bis(diphenylthiophosphinyl)disulfane, R2P(S)SSP(S)R2; (ii) bis(thiophosphoryl)disulfane, (RO)2P(S)SSP(S)(OR)2; (iii) tetraalkylthiuram disulfides, R2NC(S)SSC(S)NR2; (iv) tetraalkyldiphosphine disulfides, R2P(S)P(S)R2; (v) dibenzothiazolyl disulfide, (C6H4NSC)2; and (vi) Lawesson's reagent, (CH3OC6H4)2P2S4. The primary products, namely, the complexes CpCr(CO)2(SPR2), CpCr(CO)2)(S2CNR2), CpCr(CO)2(SCSN(C6H4)), and CpCr(CO)2(SPC6H4OCH3), containing the thiophosphinito, dithiocarbamate, 2-mercaptobenzothiazole, and dithiophosphorane ligands, respectively, arise from facile cleavage of the S-S, P-P, and P-S bonds in the organic substrates. Further treatment of these complexes with 1 under thermal activation results in cleavage of C-X (X = N, S), P-S, and Cr-E (E = C, N, P, S) bonds, accompanied by C-C and P-P bond formation in some cases, generating a variety of organometallic compounds belonging to the phosphido, phosphinidene, thiocarbenoid, dithiooxamide, aminocarbyne, aminoalkenylacyl, and cuboidal types.

8.
Inorg Chem ; 42(1): 96-106, 2003 Jan 13.
Article in English | MEDLINE | ID: mdl-12513082

ABSTRACT

The reaction of [(eta(6)-arene)RuCl(2)](2) (arene = C(6)Me(6), 1,4-MeC(6)H(4)CHMe(2)) with a large excess of the dianion of bis(2-mercaptoethyl) sulfide, (HSCH(2)CH(2))(2)S, obtained from deprotonation of the dithiol with freshly prepared NaOMe, gives the deep red, monomeric complexes [(eta(6)-arene)Ru(eta(3)-C(4)H(8)S(3))] (arene = C(6)Me(6) (5), 1,4-MeC(6)H(4)CHMe(2) (6)) in which the dianion is bound to the metal atom through one thioether and two thiolate sulfur atoms. Complex 5 reacts with [(eta(6)-C(6)Me(6))RuCl(2)](2) (4) in a 2:1 mole ratio to give a quantitative yield of the chloride salt of a binuclear cation [((eta(6)-C(6)Me(6))Ru)(2)Cl(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](+) (7) in which the thiolate sulfur atoms of the [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(8)S(3))] group bridge to a (eta(6)-C(6)Me(6))RuCl unit. This compound is also obtained directly from the reaction of 4 with the dithiolate, if the Ru dimer is used in large excess. The binuclear complex [((eta(6)-C(6)Me(6))Ru)(2)(MeCN)(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](PF(6))(2).MeCN, (9)(PF(6))(2).MeCN, is obtained by treatment of (7)Cl with NH(4)PF(6) in acetonitrile. Protonation of 5 with HCl gave the mono- and diprotonated derivatives viz. [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(9)S(3))]Cl, (8)Cl, and [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(10)S(3))]Cl(2), (10)Cl(2), respectively. The reaction of 5 with methyl iodide gives both the mono- and di-S-methylated derivatives. Treatment of 5 with dibromoalkanes, Br(CH(2))(n)Br (n = 1-5), effects ring closure to give the (eta(6)-C(6)Me(6))Ru dications containing the trithia mesocyclic zS3 (z = 8-12) ligands, isolated as their PF(6) salts. The X-ray crystal structures of 5, 6, the solvates of (7)Cl and (9)(PF(6))(2), and the trithia mesocyclic Ru complexes (eta(6)-C(6)Me(6))Ru(zS3)(PF(6))(2) (z = 8-11) are reported.

9.
J Am Chem Soc ; 124(30): 8804-5, 2002 Jul 31.
Article in English | MEDLINE | ID: mdl-12137527

ABSTRACT

Extensive ring cleavage in the mercaptobenzothiazole chromium complex CpCr(CO)2(SCSN(C6H4)) (2), initiated by cyclopentadienyl chromium tricarbonyl, produced novel polynuclear complexes 3-5.


Subject(s)
Chelating Agents/chemistry , Chromium/chemistry , Cyclopentanes/chemistry , Organometallic Compounds/chemistry , Thiazoles/chemistry , Molecular Structure , X-Ray Diffraction
10.
Angew Chem Int Ed Engl ; 40(17): 3236-3239, 2001 Sep 03.
Article in English | MEDLINE | ID: mdl-29712071

ABSTRACT

Thermolysis of the dithiocarbamate complex 1 led to the formation of the thiocarbenoid complex 2 and two double cubanes: 3, which has an intercubane Cr-Cr bond and a dithiooxamide ligand in the µ-η2 ,η4 bonding mode, and 4, which contains two dithiocarbamate ligands in the µ-η1 ,η2 bonding mode.

SELECTION OF CITATIONS
SEARCH DETAIL
...