Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrinology ; 154(1): 89-101, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23150493

ABSTRACT

ß-Cell lipotoxicity is thought to play an important role in the development of type 2 diabetes. However, no study has examined its role in type 1 diabetes, which could be clinically relevant for slow-onset type 1 diabetes. Reports of enhanced cytokine toxicity in fat-laden islets are consistent with the hypothesis that lipid and cytokine toxicity may be synergistic. Thus, ß-cell lipotoxicity could be enhanced in models of autoimmune diabetes. To determine this, we examined the effects of prolonged free fatty acids elevation on ß-cell secretory function in the prediabetic diabetes-prone BioBreeding (dp-BB) rat, its diabetes-resistant BioBreeding (dr-BB) control, and normal Wistar-Furth (WF) rats. Rats received a 48-h iv infusion of saline or Intralipid plus heparin (IH) (to elevate free fatty acid levels ~2-fold) followed by hyperglycemic clamp or islet secretion studies ex vivo. IH significantly decreased ß-cell function, assessed both by the disposition index (insulin secretion corrected for IH-induced insulin resistance) and in isolated islets, in dp-BB, but not in dr-BB or WF, rats, and the effect of IH was inhibited by the antioxidant N-acetylcysteine. Furthermore, IH significantly increased islet cytokine mRNA and plasma cytokine levels (monocyte chemoattractant protein-1 and IL-10) in dp-BB, but not in dr-BB or WF, rats. All dp-BB rats had mononuclear infiltration of islets, which was absent in dr-BB and WF rats. In conclusion, the presence of insulitis was permissive for IH-induced ß-cell dysfunction in the BB rat, which suggests a link between ß-cell lipotoxicity and islet inflammation.


Subject(s)
Fatty Acids/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Prediabetic State/immunology , Prediabetic State/metabolism , Animals , Chemokine CCL2/blood , Emulsions/pharmacology , Female , Immunohistochemistry , Interleukin-10/blood , Islets of Langerhans/drug effects , Phospholipids/pharmacology , Rats , Rats, Inbred BB , Real-Time Polymerase Chain Reaction , Soybean Oil/pharmacology
2.
Am J Physiol Endocrinol Metab ; 292(2): E549-60, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17003242

ABSTRACT

We determined the effect of 48-h elevation of plasma free fatty acids (FFA) on insulin secretion during hyperglycemic clamps in control female Wistar rats (group a) and in the following female rat models of progressive beta-cell dysfunction: lean Zucker diabetic fatty (ZDF) rats, both wild-type (group b) and heterozygous for the fa mutation in the leptin receptor gene (group c); obese (fa/fa) Zucker rats (nonprediabetic; group d); obese prediabetic (fa/fa) ZDF rats (group e); and obese (fa/fa) diabetic ZDF rats (group f). FFA induced insulin resistance in all groups but increased C-peptide levels (index of absolute insulin secretion) only in obese prediabetic ZDF rats. Insulin secretion corrected for insulin sensitivity using a hyperbolic or power relationship (disposition index or compensation index, respectively, both indexes of beta-cell function) was decreased by FFA. The decrease was greater in normoglycemic heterozygous lean ZDF rats than in Wistar controls. In obese "prediabetic" ZDF rats with mild hyperglycemia, the FFA-induced decrease in beta-cell function was no greater than that in obese Zucker rats. However, in overtly diabetic obese ZDF rats, FFA further impaired beta-cell function. In conclusion, 1) the FFA-induced impairment in beta-cell function is accentuated in the presence of a single copy of a mutated leptin receptor gene, independent of hyperglycemia. 2) In prediabetic ZDF rats with mild hyperglycemia, lipotoxicity is not accentuated, as the beta-cell mounts a partial compensatory response for FFA-induced insulin resistance. 3) This compensation is lost in diabetic rats with more marked hyperglycemia and loss of glucose sensing.


Subject(s)
Disease Models, Animal , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/pathology , Lipids/pharmacology , Pancreatic Diseases/physiopathology , Animals , Blood Glucose/analysis , Body Weight , Fatty Acids, Nonesterified/blood , Female , Glucose Clamp Technique , Hyperglycemia/etiology , Insulin/blood , Insulin Resistance , Lipids/blood , Pancreatic Diseases/blood , Pancreatic Diseases/etiology , Rats , Rats, Wistar , Rats, Zucker
SELECTION OF CITATIONS
SEARCH DETAIL
...