Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 7(1): 145-158, 2023 01 10.
Article in English | MEDLINE | ID: mdl-35358998

ABSTRACT

In chronic lymphocytic leukemia (CLL), B-cell receptor signaling, tumor-microenvironment interactions, and somatic mutations drive disease progression. To better understand the intersection between the microenvironment and molecular events in CLL pathogenesis, we integrated bulk transcriptome profiling of paired peripheral blood (PB) and lymph node (LN) samples from 34 patients. Oncogenic processes were upregulated in LN compared with PB and in immunoglobulin heavy-chain variable (IGHV) region unmutated compared with mutated cases. Single-cell RNA sequencing (scRNA-seq) distinguished 3 major cell states: quiescent, activated, and proliferating. The activated subpopulation comprised only 2.2% to 4.3% of the total tumor bulk in LN samples. RNA velocity analysis found that CLL cell fate in LN is unidirectional, starts in the proliferating state, transitions to the activated state, and ends in the quiescent state. A 10-gene signature derived from activated tumor cells was associated with inferior treatment-free survival (TFS) and positively correlated with the proportion of activated CD4+ memory T cells and M2 macrophages in LN. Whole exome sequencing (WES) of paired PB and LN samples showed subclonal expansion in LN in approximately half of the patients. Since mouse models have implicated activation-induced cytidine deaminase in mutagenesis, we compared AICDA expression between cases with and without clonal evolution but did not find a difference. In contrast, the presence of a T-cell inflamed microenvironment in LN was associated with clonal stability. In summary, a distinct minor tumor subpopulation underlies CLL pathogenesis and drives the clinical outcome. Clonal trajectories are shaped by the LN milieu, where T-cell immunity may contribute to suppressing clonal outgrowth. The clinical study is registered at clinicaltrials.gov as NCT00923507.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Mice , Animals , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Genetic Heterogeneity , Immunoglobulin Variable Region/genetics , Signal Transduction , Disease Progression , Tumor Microenvironment/genetics
2.
Breast Cancer Res ; 24(1): 39, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659040

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR)-T cells can induce powerful immune responses in patients with hematological malignancies but have had limited success against solid tumors. This is in part due to the immunosuppressive tumor microenvironment (TME) which limits the activity of tumor-infiltrating lymphocytes (TILs) including CAR-T cells. We have developed a next-generation armored CAR (F i-CAR) targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is expressed at high levels in a range of aggressive tumors including poorly prognostic triple-negative breast cancer (TNBC). The F i-CAR-T is designed to release an anti-PD-1 checkpoint inhibitor upon CAR-T cell activation within the TME, facilitating activation of CAR-T cells and TILs while limiting toxicity. METHODS: To bolster potency, we developed a F i-CAR construct capable of IL-2-mediated, NFAT-induced secretion of anti-PD-1 single-chain variable fragments (scFv) within the tumor microenvironment, following ROR1-mediated activation. Cytotoxic responses against TNBC cell lines as well as levels and binding functionality of released payload were analyzed in vitro by ELISA and flow cytometry. In vivo assessment of potency of F i-CAR-T cells was performed in a TNBC NSG mouse model. RESULTS: F i-CAR-T cells released measurable levels of anti-PD-1 payload with 5 h of binding to ROR1 on tumor and enhanced the cytotoxic effects at challenging 1:10 E:T ratios. Treatment of established PDL1 + TNBC xenograft model with F i-CAR-T cells resulted in significant abrogation in tumor growth and improved survival of mice (71 days), compared to non-armored CAR cells targeting ROR1 (F CAR-T) alone (49 days) or in combination with systemically administered anti-PD-1 antibody (57 days). Crucially, a threefold increase in tumor-infiltrating T cells was observed with F i-CAR-T cells and was associated with increased expression of genes related to cytotoxicity, migration and proliferation. CONCLUSIONS: Our next-generation of ROR1-targeting inducible armored CAR platform enables the release of an immune stimulating payload only in the presence of target tumor cells, enhancing the therapeutic activity of the CAR-T cells. This technology provided a significant survival advantage in TNBC xenograft models. This coupled with its potential safety attributes merits further clinical evaluation of this approach in TNBC patients.


Subject(s)
Receptors, Chimeric Antigen , Single-Chain Antibodies , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Humans , Mice , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Single-Chain Antibodies/genetics , Single-Chain Antibodies/metabolism , T-Lymphocytes , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy , Tumor Microenvironment
3.
Nat Commun ; 13(1): 1698, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361793

ABSTRACT

Combining single-cell cytometry datasets increases the analytical flexibility and the statistical power of data analyses. However, in many cases the full potential of co-analyses is not reached due to technical variance between data from different experimental batches. Here, we present cyCombine, a method to robustly integrate cytometry data from different batches, experiments, or even different experimental techniques, such as CITE-seq, flow cytometry, and mass cytometry. We demonstrate that cyCombine maintains the biological variance and the structure of the data, while minimizing the technical variance between datasets. cyCombine does not require technical replicates across datasets, and computation time scales linearly with the number of cells, allowing for integration of massive datasets. Robust, accurate, and scalable integration of cytometry data enables integration of multiple datasets for primary data analyses and the validation of results using public datasets.


Subject(s)
Technology , Flow Cytometry/methods
5.
Oncoimmunology ; 6(7): e1326437, 2017.
Article in English | MEDLINE | ID: mdl-28811962

ABSTRACT

We have developed a humanized bi-specific T-cell engager (BiTE) targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1), a cell surface antigen present on a range of malignancies and cancer-initiating cells. Focusing initially on pancreatic cancer, we demonstrated that our ROR1 BiTE results in T cell mediated and antigen-specific cytotoxicity against ROR1-expressing pancreatic cancer cell lines in vitro at exceedingly low concentrations (0.1 ng/mL) and low effector to target ratios. Our BiTE prevented engraftment of pancreatic tumor xenografts in murine models and reduced the size of established subcutaneous tumors by at least 3-fold. To validate its wider therapeutic potential, we next demonstrated significant cytotoxicity against ovarian cancer in an in vitro and in vivo setting and T-cell-mediated killing of a range of histologically distinct solid tumor cell lines. Overall, our ROR1 BiTE represents a promising immunotherapy approach, because of its ability to target a broad range of malignancies, many with significant unmet therapeutic needs.

SELECTION OF CITATIONS
SEARCH DETAIL
...