Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 28(17): 175901, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27023160

ABSTRACT

Dielectric response of perovskite Sr1-xBaxMnO3 (x = 0.43 and 0.45) ceramics was investigated using microwave, THz and infrared spectroscopic techniques in order to study the ferroelectric and antiferromagnetic phase transitions with critical temperatures TC ≈ 350 K and TN ≈ 200 K, respectively. The two lowest-frequency polar phonons are overdamped above TN and they exhibit pronounced softening on heating towards TC. Nevertheless, permittivity ε' in the THz range shows only a small anomaly at TC because the phonon contribution to ε' is rather small. The phonons are coupled with a central mode which provides the main contribution to the dielectric anomaly at TC. Thus, the ferroelectric phase transition has characteristics of a crossover from displacive to order-disorder type. At the same time, the intrinsic THz central peak is partially screened by conductivity and related Maxwell-Wagner relaxation, which dominates the microwave and lower-frequency spectra. Below TN, the ferroelectric distortion markedly decreases, which has an influence on the frequencies of both the central and soft modes. Therefore, ε' in the THz range increases at TN on cooling. In spite of the strong spin-phonon coupling near TN, surprisingly no magnetodielectric effect was observed in the THz spectra upon applying magnetic field of up to 7 T, which is in contradiction with the theoretically expected huge magnetoelectric coupling. We explain this fact as due to the insensitivity of TN to magnetic field.

2.
J Phys Condens Matter ; 23(2): 025904, 2011 Jan 19.
Article in English | MEDLINE | ID: mdl-21406850

ABSTRACT

Dielectric properties of Eu(0.5)Ba(0.5)TiO(3) ceramics were investigated between 10 and 300 K in the frequency range of 1 MHz-100 THz. Permittivity exhibits a strong peak near the ferroelectric phase transition at 215 K. This is mainly due to softening of the lowest frequency polar phonon revealed in THz and infrared spectra. Dielectric relaxation was observed also below the ferroelectric soft mode frequency in the whole investigated temperature region, but it is probably caused by some defects such as Eu(3 + ) cations or oxygen vacancies. This implies that the ferroelectric phase transition has predominantly a displacive character. Raman scattering spectra revealed a lowering of crystal symmetry in the ferroelectric phase and XRD analysis indicated orthorhombic A2mm symmetry below 215 K. The magnetic measurements performed at various frequencies in the field cooled and field heating regime after cooling in zero magnetic fields excluded spin glass behavior and proved an antiferromagnetic order below 1.9 K in Eu(0.5)Ba(0.5)TiO(3).


Subject(s)
Barium Compounds/chemistry , Ceramics/chemistry , Europium/chemistry , Ferric Compounds/chemistry , Magnetics , Titanium/chemistry , Electric Conductivity , Temperature
3.
Nat Mater ; 9(8): 649-54, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20639893

ABSTRACT

We describe the first-principles design and subsequent synthesis of a new material with the specific functionalities required for a solid-state-based search for the permanent electric dipole moment of the electron. We show computationally that perovskite-structure europium barium titanate should exhibit the required large and pressure-dependent ferroelectric polarization, local magnetic moments and absence of magnetic ordering at liquid-helium temperature. Subsequent synthesis and characterization of Eu(0.5)Ba(0.5)TiO(3) ceramics confirm the predicted desirable properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...