Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(7): e0279515, 2023.
Article in English | MEDLINE | ID: mdl-37471320

ABSTRACT

Specification of the epiblast (EPI) and primitive endoderm (PE) in the mouse embryo involves fibroblast growth factor (FGF) signaling through the RAS/MAP kinase pathway. FGFR1 and FGFR2 are thought to mediate this signaling in the inner cell mass (ICM) of the mouse blastocyst and BMP signaling can also influence PE specification. In this study, we further explored the dynamics of FGFR2 expression through an enhanced green fluorescent protein (eGFP) reporter mouse line (FGFR2-eGFP). We observed that FGFR2-eGFP is present in the late 8-cell stage; however, it is absent or reduced in the ICM of early blastocysts. We then statistically correlated eGFP expression with PE and EPI markers GATA6 and NANOG, respectively. We detected that eGFP is weakly correlated with GATA6 in early blastocysts, but this correlation quickly increases as the blastocyst develops. The correlation between eGFP and NANOG decreases throughout blastocyst development. Treatment with FGF from the morula stage onwards did not affect FGFR2-eGFP presence in the ICM of early blastocysts; however, late blastocysts presented FGFR2-eGFP in all cells of the ICM. BMP treatment positively influenced FGFR2-eGFP expression and reduced the number of NANOG-positive cells in late blastocysts. In conclusion, FGFR2 is not strongly associated with PE precursors in the early blastocyst, but it is highly correlated with PE cells as blastocyst development progresses, consistent with the proposed role for FGFR2 in maintenance rather than initiating the PE lineage.


Subject(s)
Endoderm , Germ Layers , Animals , Mice , Blastocyst/metabolism , Cell Differentiation , Cell Lineage , Embryo, Mammalian/metabolism , Endoderm/metabolism , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Germ Layers/metabolism
2.
Stem Cells Dev ; 32(17-18): 515-523, 2023 09.
Article in English | MEDLINE | ID: mdl-37345692

ABSTRACT

Cloning cattle using somatic cell nuclear transfer (SCNT) is inefficient. Although the rate of development of SCNT embryos in vitro is similar to that of fertilized embryos, most fail to develop into healthy calves. In this study, we aimed to identify developmentally competent embryos according to blastocyst cell composition and perform transcriptome analysis of single embryos. Transgenic SCNT embryos expressing nuclear-localized HcRed gene at day 7 of development were imaged by confocal microscopy for cell counting and individually transferred to recipient heifers. Pregnancy rates were determined by ultrasonography. Embryos capable of establishing pregnancy by day 35 had an average of 117 ± 6 total cells, whereas embryos with an average of 128 ± 5 cells did not establish pregnancy (P < 0.05). A lesser average number of 41 ± 3 cells in the inner cell mass (ICM) also resulted in pregnancies (<0.05) than a greater number of 48 ± 2 cells in the ICM. Single embryos were then subjected to RNA sequencing for transcriptome analysis. Using weighted gene coexpression network analysis, we identified clusters of genes in which gene expression correlated with the number of total cells or ICM cells. Gene ontology analysis of these clusters revealed enriched biological processes in coenzyme metabolic process, intracellular signaling cascade, and glucose catabolic process, among others. We concluded that SCNT embryos with fewer total and ICM cell numbers resulted in greater pregnancy establishment rates and that these differences are reflected in the transcriptome of such embryos.


Subject(s)
Embryonic Development , Transcriptome , Pregnancy , Animals , Cattle , Female , Transcriptome/genetics , Embryonic Development/genetics , Blastocyst , Nuclear Transfer Techniques/veterinary , Cloning, Organism/methods , Cell Count
3.
Methods Mol Biol ; 2647: 59-81, 2023.
Article in English | MEDLINE | ID: mdl-37041329

ABSTRACT

Early cell specification in mammalian preimplantation embryos is an intricate cellular process that leads to coordinated spatial and temporal expression of specific genes. Proper segregation into the first two cell lineages, the inner cell mass (ICM) and the trophectoderm (TE), is imperative for developing the embryo proper and the placenta, respectively. Somatic cell nuclear transfer (SCNT) allows the formation of a blastocyst containing both ICM and TE from a differentiated cell nucleus, which means that this differentiated genome must be reprogrammed to a totipotent state. Although blastocysts can be generated efficiently through SCNT, the full-term development of SCNT embryos is impaired mostly due to placental defects. In this review, we examine the early cell fate decisions in fertilized embryos and compare them to observations in SCNT-derived embryos, in order to understand if these processes are affected by SCNT and could be responsible for the low success of reproductive cloning.


Subject(s)
Cell Differentiation , Nuclear Transfer Techniques , Placenta , Animals , Female , Pregnancy , Blastocyst/metabolism , Cloning, Organism , Embryo, Mammalian/metabolism , Mammals
4.
Reprod Fertil Dev ; 31(9): 1434-1443, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31046900

ABSTRACT

The aim of this study was to confirm gene and protein expression of oxytocin receptor (OTR) and sex hormone-binding globulin (SHBG) in the testis and epididymis of dogs, correlating these data with sperm quality and production and testosterone concentrations. Positive correlations were found between OTR and SHBG expression in both the testis and epididymis. Testicular OTR expression was positively associated with plasma membrane and acrosome integrity in canine spermatozoa, whereas SHBG expression in the testis was positively correlated with various sperm characteristics, such as sperm concentration, total and progressive motility, plasma membrane integrity and acrosome integrity. Testicular expression of both OTR and SHBG was negatively correlated with low sperm mitochondrial activity. In the epididymis, SHBG expression was only positively correlated with plasma membrane integrity. Analysis of protein expression revealed that testicular OTR was positively correlated with testosterone concentrations and negatively correlated with the absence of sperm mitochondrial activity. In addition, SHBG expression in the testes was associated with epididymis SHBG expression and morphologically normal cells. Immunohistochemical (IHC) analysis revealed the presence of both OTR and SHBG in testicular smooth muscles and Leydig cells. However, in the epididymis, OTR was only located in smooth muscle cells, whereas neither IHC nor western blotting detected SHBG. Together, the results of this study suggest that OTR and SHBG play key roles in spermatogenesis and sperm maturation, being essential for male reproductive success.


Subject(s)
Epididymis/metabolism , Receptors, Oxytocin/metabolism , Sex Hormone-Binding Globulin/metabolism , Spermatozoa/physiology , Testis/metabolism , Animals , Dogs , Male , Mitochondria/metabolism , Spermatogenesis/physiology
5.
Anim Reprod Sci ; 196: 219-229, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30120011

ABSTRACT

Spermatogonial stem cells (SSC) have the potential to restore spermatogenesis when transplanted into testes depleted of germ cells. Due to this property, SSC could be used in breeding programs and in transgenic animal research. Particularly in cattle, SSC are not as well characterized as in mice or humans. In mice, C-X-C Motif Chemokine Receptor 4 positive (CXCR4+) testicular cells have high SSC potential. It, therefore, was hypothesized that CXCR4 is a marker of undifferentiated spermatogonia in cattle. Using samples from pre-pubertal calves, the CXCR4 protein was detected by immunohistochemistry in a few cells of the seminiferous tubules. Testicular cells were isolated, frozen-thawed and submitted to magnetic-activated cell sorting using anti-CXCR4 antibody. Quantitative RT-PCR analysis revealed that CXCR4+ cells had THY1, OCT4 and ZBTB16 (or PLZF) mRNA in these cells. Flow cytometry results indicated that the proportion of THY1+ cells is enriched in CXCR4+ populations. Colonization potential of CXCR4+ cells was assessed after xenotransplantation into testes of nude mice treated with busulfan. Transplantation of CXCR4+ cells yielded an increase of 5.4-fold when compared to CXCR4- cells. These results indicate that CXCR4 could be used as a marker to enrich and sort cells of bulls with putative spermatogonial stem cell potential.


Subject(s)
Cattle/physiology , Spermatogenesis/physiology , Spermatogonia/cytology , Testis/physiology , Animals , Male , Receptors, CXCR4 , Stem Cells , Testis/cytology
6.
Pesqui. vet. bras ; 36(3): 187-196, mar. 2016. tab
Article in Portuguese | LILACS | ID: lil-782069

ABSTRACT

A cardiomiopatia hipertrófica (CMH) é a principal cardiopatia dos felinos e é caracterizada por hipertrofia miocárdica concêntrica, sem dilatação ventricular. O ecocardiograma é o melhor meio diagnóstico não invasivo para a diferenciação das cardiomiopatias e é considerado padrão ouro para a detecção de hipertrofia ventricular presente na CMH. Alterações eletrocardiográficas também são comuns em animais com CMH e o eletrocardiograma (ECG) é um teste de triagem para detecção de hipertrofia ventricular em humanos, sendo um exame rápido e facilmente disponível. Em gatos, poucos estudos foram realizados quanto à sensibilidade e especificidade do ECG na detecção de hipertrofia ventricular. Com a intenção de avaliar o uso do ECG como ferramenta de triagem para diagnóstico de CMH em felinos, gatos da raça Persa (n=82) foram avaliados por meio de exames ecocardiográfico e eletrocardiográfico. Animais com bloqueios e/ou distúrbios de condução foram excluídos da análise estatística (n=22). Posteriormente, os animais incluídos foram classificados em: normais (n=38), suspeitos (n=6) e acometidos pela CMH (n=16)...


Hypertrophic cardiomyopathy (HCM) is the most common feline heart disease and is characterized by increased cardiac mass with a hypertrophied and not dilated left ventricle. The echocardiography is the best noninvasive diagnostic tool for the differentiation of cardiomyopathies and is considered the gold standard for detection of ventricular hypertrophy present in HCM. Electrocardiographic changes are also common in animals with HCM and the electrocardiogram (ECG) is quick, easy and highly available screening test for the detection of ventricular hypertrophy in humans. In cats, few studies have been conducted regarding the sensitivity and specificity of ECG in detecting ventricular hypertrophy. With the intention of evaluating the use of ECG as a screening tool for diagnosis of HCM in cats, Persian cats (n=82) were evaluated by echocardiographic and electrocardiographic examinations. Animals with blocks and/or conduction disturbances were excluded from statistical analysis (n=22). Subsequently the animals included were classified as normal (n=38), suspicious (n=6) and affected by HCM (n=16)...


Subject(s)
Animals , Cats , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/pathology , Cardiomyopathy, Hypertrophic/veterinary , Electrocardiography/veterinary , Hypertrophy/pathology , Hypertrophy/veterinary , Heart Diseases/diagnosis , Heart Diseases/pathology , Heart Diseases/veterinary , Hypertrophy, Left Ventricular/veterinary , Heart Ventricles
7.
Mol Reprod Dev ; 81(10): 962-70, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25251051

ABSTRACT

Placental defects are common in bovine embryos produced using assisted reproductive techniques. A proper understanding of the events leading to inner cell mass (ICM) and trophectoderm (TE) specification could help identify the origins of such developmental failures. We focused on caudal-type homeobox transcription factor 2 (CDX2) since it has a specific role during TE differentiation in mouse embryos. Of all the preimplantation stages analyzed, CDX2 protein was present only at the blastocyst stage. To further understand the roles of CDX2 during bovine development, we depleted CDX2 mRNA; despite a significant loss of detectable protein, embryos were able to form blastocysts at the same rate as controls. Embryos lacking CDX2 did not show abnormalities in the number of TE, ICM, or total cells in the blastocyst. Expression of the developmentally important genes SOX2, POU5F1, and NANOG, or TE markers such as IFN-T and KRT18 were not affected by the reduction in CDX2 levels, nor was the localization of SOX2 and POU5F1 protein. Using a functional barrier assay, we observed that the TE epithelial layer of embryos lacking CDX2 had lost its integrity. Our results thus indicate that CDX2 is not required for TE formation during bovine development; nevertheless, it is necessary for maintaining TE integrity.


Subject(s)
Blastocyst/metabolism , Embryonic Development/physiology , Gene Expression Regulation, Developmental/physiology , Homeodomain Proteins/metabolism , RNA, Messenger/biosynthesis , Animals , Blastocyst/cytology , Cattle , Mice
8.
Biol Reprod ; 90(2): 30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24389873

ABSTRACT

To date, efforts to establish pluripotent embryonic stem cells from bovine embryos have failed. The lack of reliable pluripotency markers is an important drawback when attempting to derive these cells. This study aimed to identify genes upregulated in the inner cell mass (ICM) of bovine blastocysts, and we selected SOX2 for further characterization. Spatial and temporal localization of the SOX2 protein revealed that its expression starts at the 16-cell stage and then becomes restricted to the ICMs of blastocysts. To study the role of SOX2 during the early development of bovine embryos, we designed siRNA to target SOX2. We began by injecting this siRNA into zygotes; the rate at which blastocysts developed declined compared to noninjected or scramble-injected controls. When only one blastomere of a two-cell embryo was injected with SOX2 siRNA, we observed development rates similar to those of controls. Daughter cells of the injected blastomere were tracked by TRITC fluorescence and found to contribute to the ICM, as select cells also lacked SOX2. Gene expression analysis revealed a decrease in SOX2 and NANOG gene expression in siRNA-injected embryos, but OCT4 expression remained unchanged. We conclude that SOX2 localizes exclusively in the ICM of bovine blastocysts, and its downregulation negatively impacts preimplantation development; however, it is still unclear as to why downregulation of SOX2 in one cell of a two-cell embryo does not affect the composition of the ICM.


Subject(s)
Blastocyst/metabolism , Cattle/embryology , SOXB1 Transcription Factors/genetics , Animals , Blastocyst/cytology , Blastocyst/drug effects , Blastocyst Inner Cell Mass/drug effects , Blastocyst Inner Cell Mass/metabolism , Cattle/genetics , Cells, Cultured , Ectoderm/cytology , Ectoderm/drug effects , Ectoderm/metabolism , Female , Gene Expression Regulation, Developmental/drug effects , Gene Knockdown Techniques , Male , Organisms, Genetically Modified , RNA, Small Interfering/pharmacology , SOXB1 Transcription Factors/antagonists & inhibitors , SOXB1 Transcription Factors/metabolism
9.
Cell Reprogram ; 15(1): 24-34, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23276226

ABSTRACT

The production of healthy, live, cloned animals by somatic cell nuclear transfer (SCNT) has been hampered by low efficiencies. Significant epigenetic changes must take place to ensure proper chromatin remodeling in SCNT. We hypothesized that exogenous expression of OCT4 in donor fibroblasts prior to its fusion with enucleated oocytes would facilitate SCNT reprogramming. We infected bovine adult fibroblasts with retroviral vectors containing yellow fluorescent protein (YFP) only, or the OCT4 gene fused to YFP (YO). We found that development to the blastocyst stage was not different between NT-YFP and NT-YO groups. NT-YFP embryos had the fewest trophoblast cells, measured by numbers of CDX2-positive cells. Fibroblasts expressing OCT4 had reduced levels of histone 3 lysine 9 or 27 trimethylation (H3K9me3 and H3K27me3, respectively). NT-YO blastocysts displayed higher H3K9me3 levels than IVF and NT-YFP embryos; however, they did not have different H3K27me3 levels. Levels of XIST mRNA expression in NT-YO and NT-YF were higher when compared to in vitro-fertilized blastocysts. We observed no differences in the expression of SOX2, NANOG, and CDX2. Although overexpression of OCT4 in donor cells increased H3K9me3 and did not reduce XIST gene expression, we show that a single transcription factor can affect the number of trophectoderm cells in bovine SCNT embryos.


Subject(s)
Animals, Genetically Modified/embryology , Blastocyst/metabolism , Cell Nucleus/metabolism , Fibroblasts/metabolism , Gene Expression Regulation, Developmental , Nuclear Transfer Techniques , Octamer Transcription Factor-3/biosynthesis , Animals , Animals, Genetically Modified/genetics , Blastocyst/cytology , Cattle , Cell Nucleus/genetics , Cloning, Organism/methods , Fibroblasts/cytology , Histones/genetics , Histones/metabolism , Humans , Methylation , Octamer Transcription Factor-3/genetics , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Transfection
10.
Biol Reprod ; 86(3): 76, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22190703

ABSTRACT

Reproductive health of humans and animals exposed to daily irradiants from solar/cosmic particles remains largely understudied. We evaluated the sensitivities of bovine and mouse oocytes to bombardment by krypton-78 (1 Gy) or ultraviolet B (UV-B; 100 microjoules). Mouse oocytes responded to irradiation by undergoing massive activation of caspases, rapid loss of energy without cytochrome-c release, and subsequent necrotic death. In contrast, bovine oocytes became positive for annexin-V, exhibited cytochrome-c release, and displayed mild activation of caspases and downstream DNAses but with the absence of a complete cell death program; therefore, cytoplasmic fragmentation was never observed. However, massive cytoplasmic fragmentation and increased DNA damage were induced experimentally by both inhibiting RAD51 and increasing caspase 3 activity before irradiation. Microinjection of recombinant human RAD51 prior to irradiation markedly decreased both cytoplasmic fragmentation and DNA damage in both bovine and mouse oocytes. RAD51 response to damaged DNA occurred faster in bovine oocytes than in mouse oocytes. Therefore, we conclude that upon exposure to irradiation, bovine oocytes create a physiologically indeterminate state of partial cell death, attributed to rapid induction of DNA repair and low activation of caspases. The persistence of these damaged cells may represent an adaptive mechanism with potential implications for livestock productivity and long-term health risks associated with human activity in space.


Subject(s)
Apoptosis/radiation effects , Oocytes/radiation effects , Rad51 Recombinase/physiology , Radiation, Ionizing , Animals , Annexin A5/metabolism , Caspase 3/metabolism , Cattle , Cells, Cultured , Cytochromes c/metabolism , DNA Damage/radiation effects , Female , Mice , Models, Animal , Oocytes/cytology , Oocytes/metabolism
11.
PLoS One ; 5(11): e14095, 2010 Nov 23.
Article in English | MEDLINE | ID: mdl-21124794

ABSTRACT

BACKGROUND: As stem cells of the early embryo mature and differentiate into all tissues, the mitochondrial complement undergoes dramatic functional improvement. Mitochondrial activity is low to minimize generation of DNA-damaging reactive oxygen species during pre-implantation development and increases following implantation and differentiation to meet higher metabolic demands. It has recently been reported that when the stem cell type known as induced pluripotent stem cells (IPSCs) are re-differentiated for several weeks in vitro, the mitochondrial complement progressively re-acquires properties approximating input fibroblasts, suggesting that despite the observation that IPSC conversion "resets" some parameters of cellular aging such as telomere length, it may have little impact on other age-affected cellular systems such as mitochondria in IPSC-derived cells. METHODOLOGY/PRINCIPAL FINDINGS: We have examined the properties of mitochondria in two fibroblast lines, corresponding IPSCs, and fibroblasts re-derived from IPSCs using biochemical methods and electron microscopy, and found a dramatic improvement in the quality and function of the mitochondrial complement of the re-derived fibroblasts compared to input fibroblasts. This observation likely stems from two aspects of our experimental design: 1) that the input cell lines used were of advanced cellular age and contained an inefficient mitochondrial complement, and 2) the re-derived fibroblasts were produced using an extensive differentiation regimen that may more closely mimic the degree of growth and maturation found in a developing mammal. CONCLUSIONS/SIGNIFICANCE: These results - coupled with earlier data from our laboratory - suggest that IPSC conversion not only resets the "biological clock", but can also rejuvenate the energetic capacity of derived cells.


Subject(s)
Cell Differentiation/physiology , Fibroblasts/physiology , Induced Pluripotent Stem Cells/physiology , Mitochondria/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Cell Line , Energy Metabolism/physiology , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Membrane Potential, Mitochondrial/physiology , Microscopy, Electron , Mitochondria/physiology , Mitochondria/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...