Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Dyn ; 253(3): 312-332, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37776236

ABSTRACT

INTRODUCTION: Primary cilia play pivotal roles in the patterning and morphogenesis of a wide variety of organs during mammalian development. Here we examined murine foregut septation in the cobblestone mutant, a hypomorphic allele of the gene encoding the intraflagellar transport protein IFT88, a protein essential for normal cilia function. RESULTS: We reveal a crucial role for primary cilia in foregut division, since their dramatic decrease in cilia in both the foregut endoderm and mesenchyme of mutant embryos resulted in a proximal tracheoesophageal septation defects and in the formation of distal tracheo(broncho)esophageal fistulae similar to the most common congenital tracheoesophageal malformations in humans. Interestingly, the dorsoventral patterning determining the dorsal digestive and the ventral respiratory endoderm remained intact, whereas Hedgehog signaling was aberrantly activated. CONCLUSIONS: Our results demonstrate the cobblestone mutant to represent one of the very few mouse models that display both correct endodermal dorsoventral specification but defective compartmentalization of the proximal foregut. It stands exemplary for a tracheoesophageal ciliopathy, offering the possibility to elucidate the molecular mechanisms how primary cilia orchestrate the septation process. The plethora of malformations observed in the cobblestone embryo allow for a deeper insight into a putative link between primary cilia and human VATER/VACTERL syndromes.


Subject(s)
Ciliopathies , Hedgehog Proteins , Humans , Animals , Mice , Hedgehog Proteins/genetics , Cilia , Alleles , Disease Models, Animal , Mammals
2.
Dev Biol ; 409(1): 55-71, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26542012

ABSTRACT

Midbrain dopaminergic (mDA) neurons modulate various motor and cognitive functions, and their dysfunction or degeneration has been implicated in several psychiatric diseases. Both Sonic Hedgehog (Shh) and Wnt signaling pathways have been shown to be essential for normal development of mDA neurons. Primary cilia are critical for the development of a number of structures in the brain by serving as a hub for essential developmental signaling cascades, but their role in the generation of mDA neurons has not been examined. We analyzed mutant mouse lines deficient in the intraflagellar transport protein IFT88, which is critical for primary cilia function. Conditional inactivation of Ift88 in the midbrain after E9.0 results in progressive loss of primary cilia, a decreased size of the mDA progenitor domain, and a reduction in mDA neurons. We identified Shh signaling as the primary cause of these defects, since conditional inactivation of the Shh signaling pathway after E9.0, through genetic ablation of Gli2 and Gli3 in the midbrain, results in a phenotype basically identical to the one seen in Ift88 conditional mutants. Moreover, the expansion of the mDA progenitor domain observed when Shh signaling is constitutively activated does not occur in absence of Ift88. In contrast, clusters of Shh-responding progenitors are maintained in the ventral midbrain of the hypomorphic Ift88 mouse mutant, cobblestone. Despite the residual Shh signaling, the integrity of the mDA progenitor domain is severely disturbed, and consequently very few mDA neurons are generated in cobblestone mutants. Our results identify for the first time a crucial role of primary cilia in the induction of mDA progenitors, define a narrow time window in which Shh-mediated signaling is dependent upon normal primary cilia function for this purpose, and suggest that later Wnt signaling-dependent events act independently of primary cilia.


Subject(s)
Cilia/metabolism , Dopaminergic Neurons/metabolism , Embryo, Mammalian/cytology , Hedgehog Proteins/metabolism , Mesencephalon/cytology , Mesencephalon/embryology , Neurogenesis , Animals , Cilia/ultrastructure , Gene Expression Profiling , Gene Expression Regulation, Developmental , Kruppel-Like Transcription Factors/metabolism , Mice , Mutation/genetics , Nerve Tissue Proteins/metabolism , Neurogenesis/genetics , Neuroglia/metabolism , Phenotype , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/genetics , Smoothened Receptor , Stem Cells/cytology , Stem Cells/metabolism , Tumor Suppressor Proteins/metabolism , Wnt Proteins/metabolism , Zinc Finger Protein Gli2 , Zinc Finger Protein Gli3
3.
J Neurosci ; 28(48): 12887-900, 2008 Nov 26.
Article in English | MEDLINE | ID: mdl-19036983

ABSTRACT

Primary cilia are important sites of signal transduction involved in a wide range of developmental and postnatal functions. Proteolytic processing of the transcription factor Gli3, for example, occurs in primary cilia, and defects in intraflagellar transport (IFT), which is crucial for the maintenance of primary cilia, can lead to severe developmental defects and diseases. Here we report an essential role of primary cilia in forebrain development. Uncovered by N-ethyl-N-nitrosourea-mutagenesis, cobblestone is a hypomorphic allele of the IFT gene Ift88, in which Ift88 mRNA and protein levels are reduced by 70-80%. cobblestone mutants are distinguished by subpial heterotopias in the forebrain. Mutants show both severe defects in the formation of dorsomedial telencephalic structures, such as the choroid plexus, cortical hem and hippocampus, and also a relaxation of both dorsal-ventral and rostral-caudal compartmental boundaries. These defects phenocopy many of the abnormalities seen in the Gli3 mutant forebrain, and we show that Gli3 proteolytic processing is reduced, leading to an accumulation of the full-length activator isoform. In addition, we observe an upregulation of canonical Wnt signaling in the neocortex and in the caudal forebrain. Interestingly, the ultrastructure and morphology of ventricular cilia in the cobblestone mutants remains intact. Together, these results indicate a critical role for ciliary function in the developing forebrain.


Subject(s)
Cerebral Cortex/abnormalities , Cerebral Cortex/metabolism , Cilia/metabolism , Gene Expression Regulation, Developmental/genetics , Kruppel-Like Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Tumor Suppressor Proteins/genetics , Animals , Cerebral Cortex/ultrastructure , Cilia/ultrastructure , Ependyma/metabolism , Ependyma/ultrastructure , Female , Kruppel-Like Transcription Factors/genetics , Lateral Ventricles/abnormalities , Lateral Ventricles/metabolism , Lateral Ventricles/ultrastructure , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neurons/metabolism , Neurons/ultrastructure , Peptide Hydrolases/metabolism , Prosencephalon/abnormalities , Prosencephalon/metabolism , Prosencephalon/ultrastructure , Tumor Suppressor Proteins/metabolism , Wnt Proteins/metabolism , Zinc Finger Protein Gli3
SELECTION OF CITATIONS
SEARCH DETAIL
...