Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 18(10): e1010446, 2022 10.
Article in English | MEDLINE | ID: mdl-36215320

ABSTRACT

Diverse physiology relies on receptor and transporter protein down-regulation and degradation mediated by ESCRTs. Loss-of-function mutations in human ESCRT genes linked to cancers and neurological disorders are thought to block this process. However, when homologous mutations are introduced into model organisms, cells thrive and degradation persists, suggesting other mechanisms compensate. To better understand this secondary process, we studied degradation of transporter (Mup1) or receptor (Ste3) proteins when ESCRT genes (VPS27, VPS36) are deleted in Saccharomyces cerevisiae using live-cell imaging and organelle biochemistry. We find that endocytosis remains intact, but internalized proteins aberrantly accumulate on vacuolar lysosome membranes within cells. Here they are sorted for degradation by the intralumenal fragment (ILF) pathway, constitutively or when triggered by substrates, misfolding or TOR activation in vivo and in vitro. Thus, the ILF pathway functions as fail-safe layer of defense when ESCRTs disregard their clients, representing a two-tiered system that ensures degradation of surface polytopic proteins.


Subject(s)
Saccharomyces cerevisiae Proteins , Humans , Proteolysis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Vacuoles/genetics , Vacuoles/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Carrier Proteins/metabolism
2.
PLoS One ; 17(7): e0271199, 2022.
Article in English | MEDLINE | ID: mdl-35834522

ABSTRACT

Vacuoles in plants and fungi play critical roles in cell metabolism and osmoregulation. To support these functions, vacuoles change their morphology, e.g. they fragment when these organisms are challenged with draught, high salinity or metabolic stress (e.g. acetate accumulation). In turn, morphology reflects an equilibrium between membrane fusion and fission that determines size, shape and copy number. By studying Saccharomyces cerevisiae and its vacuole as models, conserved molecular mechanisms responsible for fusion have been revealed. However, a detailed understanding of vacuole fission and how these opposing processes respond to metabolism or osmoregulation remain elusive. Herein we describe a new fluorometric assay to measure yeast vacuole fission in vitro. For proof-of-concept, we use this assay to confirm that acetate, a metabolic stressor, triggers vacuole fission and show it blocks homotypic vacuole fusion in vitro. Similarly, hypertonic stress induced by sorbitol or glucose caused robust vacuole fission in vitro whilst inhibiting fusion. Using wortmannin to inhibit phosphatidylinositol (PI) -kinases or rGyp1-46 to inactivate Rab-GTPases, we show that acetate stress likely targets PI signaling, whereas osmotic stress affects Rab signaling on vacuole membranes to stimulate fission. This study sets the stage for further investigation into the mechanisms that change vacuole morphology to support cell metabolism and osmoregulation.


Subject(s)
Saccharomyces cerevisiae Proteins , Vacuoles , Acetates/metabolism , Membrane Fusion/physiology , Osmotic Pressure , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Vacuoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...