Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 101(5-1): 051301, 2020 May.
Article in English | MEDLINE | ID: mdl-32575236

ABSTRACT

We present a concise, general, and efficient procedure for calculating the cluster integrals that relate thermodynamic virial coefficients to molecular interactions. The approach encompasses nonpairwise intermolecular potentials generated from quantum chemistry or other sources; a simple extension permits efficient evaluation of temperature and other derivatives of the virial coefficients. We demonstrate with a polarizable model of water. We argue that cluster-integral methods are a potent yet underutilized instrument for the development and application of first-principles molecular models and methods.

2.
J Chem Eng Data ; 65(3)2019.
Article in English | MEDLINE | ID: mdl-33041367

ABSTRACT

We compute the vapor-liquid critical coordinates of a model of helium in which nuclear quantum effects are absent. We employ highly accurate ab initio pair and three-body potentials and calculate the critical parameters rigorously in two ways. First, we calculate the virial coefficients up to the seventh and find the point where an isotherm satisfies the critical conditions. Second, we use Gibbs Ensemble Monte Carlo (GEMC) to calculate the vapor-liquid equilibrium, and extrapolate the phase envelope to the critical point. Both methods yield results that are consistent within their uncertainties. The critical temperature of "classical helium" is 13.0 K (compared to 5.2 K for real helium), the critical pressure is 0.93 MPa, and the critical density is 28.4 mol·L-1, with expanded uncertainties (corresponding to a 95% confidence interval) on the order of 0.1 K, 0.02 MPa, and 0.5 mol·L-1, respectively. The effect of three-body interactions on the location of the critical point is small (lowering the critical temperature by roughly 0.1 K), suggesting that we are justified in ignoring four-body and higher interactions in our calculations. This work is motivated by the use of corresponding-states models for mixtures containing helium (such as some natural gases) at higher temperatures where quantum effects are expected to be negligible; in these situations, the distortion of the critical properties by quantum effects causes problems for the corresponding-states treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...