Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37299226

ABSTRACT

The thermal decomposition and kinetic parameters of four polymers, PN-1, PN-05, PN-01, and PN-005, were determined by thermogravimetry (TGA/DTG) under non-isothermal conditions. N-isopropylacrylamide (NIPA)-based polymers were synthesized by the surfactant-free precipitation polymerization (SFPP) with different concentrations of the anionic initiator potassium persulphate (KPS). Thermogravimetric experiments were carried out in the temperature range of 25-700 °C at four heating rates, 5, 10, 15, and 20 °C min-1, under a nitrogen atmosphere. Poly NIPA (PNIPA) showed three stages of mass loss during the degradation process. The thermal stability of the test material was determined. Activation energy values were estimated using Ozawa, Kissinger, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), and Friedman (FD) methods.

2.
Polymers (Basel) ; 14(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36365721

ABSTRACT

Thermosensitive copolymers P1-P5 of N-isopropylacrylamide (NIPA) and poly(ethylene glycol) methyl ether methacrylates (PEGMEMs) were synthesized via surfactant-free precipitation polymerization (SFPP) using ammonium persulfate (APS) at 70 °C. The polymerization course was evaluated by the conductivity. The hydrodynamic diameters and the polydispersity indexes (PDI) of P1-P5 in the 18-45 °C range, which were assessed via dynamic light scattering (DLS), were at 18° (nm): 26.07 ± 0.54 (PDI 0.65 ± 0.03), 68.00 ± 1.10 (PDI 0.56 ± 0,02), 45.12 ± 0.57 (PDI 0.51 ± 0.03), 62.78 ± 0.40 (PDI 0.53 ± 0.003), and 92.95 ± 1.56 (PDI 0.60 ± 0.04), respectively. The lower critical solution temperatures ranged from 31 to 33 °C. The electrophoretic mobilities estimated the zeta potential in the 18-45 °C range, and at 18 °C, they were (mV): -4.64 ± 1.30, -6.91 ± 2.67, -5.85 ± 3.17, -2.28 ± 0.30, and -3.60 ± 0.96 for P1-P5, respectively. The polymers were characterized by Attenuated Total Reflectance Fourier-Transform Infrared spectroscopy (ATR-FTIR), H nuclear magnetic resonance (1H NMR), thermogravimetric analysis (TGA/DTA), Differential Scanning Calorimetry (DSC), and powder X-ray diffraction analysis (PXRD). Stable amorphous polymers were obtained. We conclude that the length of the co-monomer chain nonlinearly influences the properties of the obtained thermosensitive polymer nanostructures.

3.
Polymers (Basel) ; 13(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805049

ABSTRACT

Thermosensitive polymers PS1-PS5 were synthesized via the surfactant free precipitation polymerization (SFPP) using 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA), and potassium persulfate (KPS) at 70 °C in aqueous environment. The effect of KPS concentrations on particle size and lower critical temperature solution (LCST) was examined by dynamic light scattering (DLS). The conductivity in the course of the synthesis and during cooling were investigated. The structural studies were performed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), H nuclear magnetic resonance (1H NMR), thermogravimetric analysis (TGA/DTA) and powder X-ray diffraction (PXRD). ATR-FTIR, 1H NMR and PXRD data confirmed the polymeric nature of the material. TGA/DTA curves demonstrated thermal stability up to approx. 160 °C. The effect of temperature on the hydrodynamic diameter (HD) and zeta potential (ZP) were evaluated by dynamic light scattering (DLS) and electrophoretic mobility (EM) in 18-45 °C range. The LCST values were between 30 and 34 °C. HD and polydispersity index (PDI) of aqueous dispersions of the synthesized polymers PS1-PS5 at 18 °C were found to be 226 ± 35 nm (PDI = 0.42 ± 0.04), 299 ± 145 nm (PDI = 0.49 ± 0.29), 389 ± 39 nm (PDI = 0.28 ± 0.07), 584 ± 75 nm (PDI = 0.44 ± 0.06), and 271 ± 50.00 nm (PDI = 0.26 ± 0.14), respectively. At 18 °C the ZPs of synthesized polymers suspensions were -13.14 ± 2.85 mV, -19.52 ± 2.86 mV, -7.73 ± 2.76 mV, -7.99 ± 1.70 mV, and -9.05 ± 2.60 mV for PS1-PS5, respectively. We found that the initiator concentration influences the physicochemical properties of products including the size of polymeric particles and the LCST.

4.
Nanomaterials (Basel) ; 9(11)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703338

ABSTRACT

The thermosensitive polymers of N-vinylcaprolactam P1, P2, P3, P4, and P5 were synthesized via the surfactant free precipitation polymerization (SFPP) at 70 °C in the presence of cationic initiator 2,2'-azobis[2-methylpropionamidine] dihydrochloride (AMPA). The influence of various concentrations of initiator AMPA on particle size, aggregation and lower critical temperature solution (LCST) was investigated by dynamic light scattering (DLS) measurement. The conductivity was measured in the course of the synthesis and during temperature decrease of the reaction mixtures. The polymers were characterized by Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR), 1H NMR, and thermogravimetric analysis. Thermal parameters of the degradations process were investigated using thermogravimetric analysis (TGA/DTA) under non-isothermal conditions in N2 atmosphere. The samples were characterized by powder X-ray diffraction analysis (PXRD).The hydrodynamic diameter (HD), polydispersity index (PDI) and zeta potential (ZP) were measured in aqueous dispersions of the synthesized polymers in temperature 18-45 °C. HD and PDI values at 18 °C were 137.23 ± 67.65 nm (PDI = 0.53 ± 0.18), 83.40 ± 74.46 nm (PDI = 0.35 ± 0.08), 22.11 ± 0.29 nm (PDI = 0.45 ± 0.05), 29.27 ± 0.50 nm (PDI = 0.41 ± 0.04), 39.18 ± 0.57 nm (PDI = 0.38 ± 0.01) for P1, P2, P3, P4, and P5, respectively. The aqueous solutions of the obtained polymers at 18-45 °C had a positive charge. ZP's for P1, P2, P3, P4, and P5 polymers at 18 °C were 11.64 ± 4.27 mV, 12.71 ± 3.56 mV, 3.24 ± 0.10 mV, 0.77 ± 0.28 mV, 1.78 ± 0.56 mV respectively. The LCST range was between 32 and 38 °C. We conclude that the concentration of initiator affects the size of obtained polymeric spheres and theirs LCST.

5.
Molecules ; 24(6)2019 Mar 23.
Article in English | MEDLINE | ID: mdl-30909617

ABSTRACT

Four stimuli-responsive polymers of N-isopropylacrylamide (NIPA) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) and crosslinked derivatives by N,N'-methylene bisacrylamide (MBA) were synthesized: PNA, PAMPSA, PNAM, PAMPSAM. The effect of the cross-linker and methyl sulphonic acid (-CH3-SO3H) group on particle size, aggregation and volume phase transition temperature (VPTT) was investigated. Polymeric particles were synthesized via the surfactant free precipitation polymerization (SFPP) at 70 °C in the presence of cationic initiator 2,2'-azobis[2-methylpropionamidine] dihydrochloride (AMP) system. Chemical composition and morphology of investigated samples were evaluated using ATR-FTIR spectroscopy, ¹H-NMR spectrometry and SEM-EDS techniques. The hydrodynamic diameters (HD), zeta potential (ZP), and polydispersity index (PDI) in aqueous dispersions were assessed by dynamic light scattering (DLS) between 18⁻42 °C. HD values at 18 °C for PNA, PAMPSA, PNAM, PAMPSAM polymers were approx. 32, 730, 715, 665 nm, and ZP values were -1.36, -0.01, 8.90, -0.09 mV, respectively. The VPTT range was observed between 29 and 41 °C. PDI's for PNA and PNAM were low and varied between 0.276 and 0.460, and between 0.119 and 0.056, respectively. PAMPSA and PAMPSAM were characterized by higher PDI in the range 0.728⁻0.959 and 0.658⁻0.836, respectively. The results confirmed the thermal sensitivity of the synthesized polymers and indicated a significant polydispersity and aggregation tendency of the resulting molecules. The conductivity results were applied for the interpretation of the polymerization process.


Subject(s)
Acrylamides/chemistry , Alkanesulfonates/chemistry , Drug Carriers/chemistry , Microspheres , Acrylamides/chemical synthesis , Acrylic Resins/chemistry , Alkanesulfonates/chemical synthesis , Drug Carriers/chemical synthesis , Electric Conductivity , Humans , Particle Size , Phase Transition , Polymerization , Polymers/chemistry , Sulfonic Acids/chemistry , Temperature
6.
J Nanosci Nanotechnol ; 19(5): 3049-3056, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30501820

ABSTRACT

The present study evaluates the effect of the cationic initiator on the hydrodynamic diameter of copolymers of N-isopropylacrylamide nanogels synthesized via a surfactant-free precipitation polymerization at 70 °C in the presence of the cationic initiator 2,2'-azobis[2- methylpropionamidine] dihydrochloride. Three types of polymeric nanoparticles were synthesized using N, N'-methylenebisacrylamide as a crosslinker. The first batch was used as a reference. The second type of particles included a poly(ethylene glycol) methyl ether-acrylate monomer, while the third type used an N-tert-butylacrylamide comonomer. The hydrodynamic diameters of the synthesized particles were between 160 and 970 nm at 18 °C. The chemical composition and morphology of the synthesized co-polymeric nanoparticles were confirmed using infrared spectroscopy, nuclear magnetic resonance and scanning electron microscopy. The zeta potentials measured via dynamic light scattering were 20.0, 17.0, -0.1 mV for the three types, respectively. The volume phase transition temperature was between 22 and 41 °C. The polydispersity index of particles synthesized with N-tert-butylacrylamide varied depending on the measurement temperature.

7.
Acta Pol Pharm ; 74(1): 199-209, 2017 Jan.
Article in English | MEDLINE | ID: mdl-29474776

ABSTRACT

For modem drug delivery, new drug carriers sensitive to various factors and with size in the range of micro- and nanometers are required. The aim of this work was to evaluate the influence of hydrophilic and hydrophobic co-monomers on the hydrodynamic diameter of three co-polymers of N-isopropylacrylamide (NIPA) nanogels synthesized at 70*C in the presence of potassium persulfate (KPS) as the initiator and N.N'-methylene bis-acrylamide (MBA) as the cross-linker. The first batch of nanoparticles was synthesized without co-monomer, whereas poly(ethylene glycol) methyl ether acrylate (PEG-MEA), and N-teii-butylacrylamide (NTB), were implemented as co-monomers for the second and third batch. Hydrodynamic diameter of nanoparticles was in the range 550-800 rn. The compositions of the synthesized co-polymer nanoparticles were con- firmed via IR and NMR analyses. The SFPP conditions resulted in hydrodynamic diameters ranging from approximately 550 to 800 nm at temperatures lower than the volume phase transition temperature (VPTT) and diameters ranging from 250 to 600 nm at temperatures above the VPTT, where the VPTT was between 26 and 41'C. The polydispersity index (PDI) showed a maximum or a minimum value at the VPTT, which was an important indicator of the volume phase transition. According to the PDI observation during thermal cycling, the addition of NTB into the polymeric chain resulted in maximal values of the PDI at the VPIT, similar to the case of nanoparticles without any additional co-monomers. In contrast, in the case of PEG-MEA, the PDI presented a minimal value. Dynamic light scattering (DLS) volume measurements, performed simultaneously with spectral methods, may lead to a fast evaluation of nanoparticles prepared by SFPP.


Subject(s)
Acrylamides/chemistry , Drug Delivery Systems , Drug Carriers , Hydrodynamics , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Nanogels , Nanoparticles/chemistry , Phase Transition , Polyethylene Glycols , Polyethyleneimine , Temperature
8.
Molecules ; 22(1)2016 Dec 26.
Article in English | MEDLINE | ID: mdl-28035967

ABSTRACT

The aim of the study was to monitor the influence of increasing initiator concentrations on the properties of poly-N-isopropylacrylamide (polyNIPA) nanoparticles obtained via surfactant free precipitation polymerization (SFPP). In all studied systems P-001 to P-1, the same amount of monomer was used, and increasing amounts of potassium persulphate (KPS). The course of each reaction was monitored by measuring the conductivity of the whole system. The resulting composition of products was confirmed by attenuated total reflectance within Fourier transformed infrared spectroscopy (ATR-FTIR) measurements. The hydrodynamic diameters with polydispersity index (PDI) and zeta potential (ZP) were measured in aqueous dispersions of the synthesized polymers in dynamic light scattering (DLS) device (λ = 678 nm), and were found to be for P-1: 20.33 nm (PDI = 0.49) and -7 mV, for P-05: 22.24 nm (PDI = 0.39) and -5 mV, for P-01: 50.14 nm (PDI = 0.49) and -3 mV, for P-005: 62.75 nm (PDI = 0.54) and -3 mV and for P-001: 509.4 nm (PDI = 0.61) and -12 mV at 18 °C, respectively. Initiator concentration affects the size and ZP of particles. The hydrodynamic diameter decreases with initiator concentration increase, whereas the time of the reaction decreases when the initiator concentration increases. This fact is reflected in the observed values of conductivity in the course of the performed reaction. Evaluated volume phase transition temperature in the range of 32 °C enables further research of the nanoparticles as thermosensitive drug carriers.


Subject(s)
Acrylic Resins/chemistry , Delayed-Action Preparations , Nanoparticles/chemistry , Potassium Compounds/chemistry , Sulfates/chemistry , Electric Conductivity , Particle Size , Phase Transition , Polymerization , Temperature
9.
Molecules ; 21(11)2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27827936

ABSTRACT

Nanospheres and microspheres are known as a multipurpose compounds and are used in various branches of science. Recent controlled delivery systems for drugs are also based on poly-micro and nanospheres. In our study we describe an investigation of the influence of thermosensitive polymer N-isopropylacrylamide (NIPA) on the release of the drug naproxen sodium (NS) with a hydrogel hydroxypropyl methylcellulose (HPMC) base. The hydrodynamic diameter (DH) of the obtained polymer was measured by using dynamic light scattering (DLS) at a wavelength of 678 nm. Hydrogel formulations of NS were prepared in a specific way ex tempore. NS was sprinkled on the surface of a distilled water, then polymer soluted in water was added. Afterward, HPMC was affixed to the solution. Prepared samples were stored at room temperature for 24 h. Release tests showed that modification of thevcross-linker type influenced the properties of synthesized polymeric particles. The NIPA derivatives obtained via surfactant free precipitation polymerization (SFPP) may be formulated as hydrogel preparations using HPMC. The obtained formulations presented varied half-release times, depending on the type of applied NIPA derivatives in hydrogel formulations. At 18 °C, the release rates were lower comparing to the reference HPMC hydrogel, whereas at 42 °C, the release rates were significantly higher. The synthesized thermosensitive polymers enabled temperature-triggered release of NS.


Subject(s)
Acrylamides/chemistry , Drug Carriers/chemical synthesis , Hypromellose Derivatives/chemistry , Naproxen/chemistry , Chemistry, Pharmaceutical , Drug Carriers/chemistry , Drug Liberation , Dynamic Light Scattering , Magnetic Resonance Spectroscopy , Nanospheres/chemistry , Thermodynamics
10.
J Mol Model ; 15(9): 1061-6, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19205758

ABSTRACT

CH(3)OX molecules (X = H, F, Cl and Br) can be formed in the atmosphere by the CH(3) + OX and CH(3)O + X recombination reactions. In the present study the results of a theoretical analysis of the kinetics and thermochemistry of this class of reactions are presented. The molecular properties of the reactants and products were derived from ab initio calculations. The high-pressure limiting rate constants for the recombination reactions were evaluated using a version of the statistical adiabatic channel model. The kinetic equations derived in this study allow a description of the kinetics of the reactions under investigation in the temperature range of 200-500 K.


Subject(s)
Bromine/chemistry , Chlorine/chemistry , Fluorine/chemistry , Hydrogen/chemistry , Methanol/chemistry , Computer Simulation , Gases/chemistry , Kinetics , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...