Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Dev ; 33(5-6): 117-127, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38164117

ABSTRACT

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSC-EVs) have been proposed as a novel therapeutic tool with numerous clinically related advantages. However, their characteristics and functionality are dependent on the source of MSCs and their cell culture conditions. Fetal bovine serum (FBS) provides a source of nutrients and growth factors to the cultured cells. However, certain pitfalls are associated with its supplementation to the culture media, including introduction of exogenous FBS-derived EVs to the cultured cells. Thus, recent practices recommend utilization of serum-free (SF) media or EV-depleted FBS. On the contrary, evidence suggests that the immunomodulatory ability of MSC-EVs can be improved by exposing MSCs to an inflammatory (IF) environment. The objective of this study was to (1) compare EVs isolated from two tissue sources of MSCs that were exposed to various cell culture conditions and (2) to evaluate their anti-inflammatory effects. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) and umbilical cord-derived mesenchymal stromal cells (UC-MSCs) were exposed to either a SF media environment, an IF environment, or media supplemented with 5% EV-depleted FBS. Following isolation of MSC-EVs, the isolates were quantified and evaluated for particle size, phenotypic changes, and their immunomodulatory potential. A statistically significant difference was not identified on the yield and protein concentration of different isolates of EVs from BM-MSCs and UC-MSCs, and all isolates had a circular appearance as evaluated via electron microscopy. A significant difference was identified on the phenotype of different EVs isolates; however, all isolates expressed classical markers such as CD9, CD63, and CD81. The addition of BM-derived MSC-EVs from FBS environment or UC-derived MSC-EVs from IF environment resulted in statistically significant downregulation of IL-6 messenger RNA (mRNA) in stimulated leukocytes. This study confirms that EVs produced by different MSC sources and cell culture conditions affect their phenotype and their immunomodulatory capacities.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Bone Marrow , Cell Culture Techniques , Extracellular Vesicles/metabolism , Cells, Cultured , Umbilical Cord , Culture Media, Serum-Free/pharmacology , Bone Marrow Cells
2.
Front Neurosci ; 17: 1249539, 2023.
Article in English | MEDLINE | ID: mdl-37841685

ABSTRACT

Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Due to bidirectional communication between the brain and gut microbial population, introduction of key gut bacteria may mitigate critical TBI-induced secondary injury cascades, thus lessening neural damage and improving functional outcomes. The objective of this study was to determine the efficacy of a daily fecal microbial transplant (FMT) to alleviate neural injury severity, prevent gut dysbiosis, and improve functional recovery post TBI in a translational pediatric piglet model. Male piglets at 4-weeks of age were randomly assigned to Sham + saline, TBI + saline, or TBI + FMT treatment groups. A moderate/severe TBI was induced by controlled cortical impact and Sham pigs underwent craniectomy surgery only. FMT or saline were administered by oral gavage daily for 7 days. MRI was performed 1 day (1D) and 7 days (7D) post TBI. Fecal and cecal samples were collected for 16S rRNA gene sequencing. Ipsilateral brain and ileum tissue samples were collected for histological assessment. Gait and behavior testing were conducted at multiple timepoints. MRI showed that FMT treated animals demonstrated decreased lesion volume and hemorrhage volume at 7D post TBI as compared to 1D post TBI. Histological analysis revealed improved neuron and oligodendrocyte survival and restored ileum tissue morphology at 7D post TBI in FMT treated animals. Microbiome analysis indicated decreased dysbiosis in FMT treated animals with an increase in multiple probiotic Lactobacilli species, associated with anti-inflammatory therapeutic effects, in the cecum of the FMT treated animals, while non-treated TBI animals showed an increase in pathogenic bacteria, associated with inflammation and disease such in feces. FMT mediated enhanced cellular and tissue recovery resulted in improved motor function including stride and step length and voluntary motor activity in FMT treated animals. Here we report for the first time in a highly translatable pediatric piglet TBI model, the potential of FMT treatment to significantly limit cellular and tissue damage leading to improved functional outcomes following a TBI.

SELECTION OF CITATIONS
SEARCH DETAIL
...