Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Small ; : e2402432, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850181

ABSTRACT

This paper presents a scalable and straightforward technique for the immediate patterning of liquid metal/polymer composites via multiphase 3D printing. Capitalizing on the polymer's capacity to confine liquid metal (LM) into diverse patterns. The interplay between distinctive fluidic properties of liquid metal and its self-passivating oxide layer within an oxidative environment ensures a resilient interface with the polymer matrix. This study introduces an inventive approach for achieving versatile patterns in eutectic gallium indium (EGaIn), a gallium alloy. The efficacy of pattern formation hinges on nozzle's design and internal geometry, which govern multiphase interaction. The interplay between EGaIn and polymer within the nozzle channels, regulated by variables such as traverse speed and material flow pressure, leads to periodic patterns. These patterns, when encapsulated within a dielectric polymer polyvinyl alcohol (PVA), exhibit an augmented inherent capacitance in capacitor assemblies. This discovery not only unveils the potential for cost-effective and highly sensitive capacitive pressure sensors but also underscores prospective applications of these novel patterns in precise motion detection, including heart rate monitoring, and comprehensive analysis of gait profiles. The amalgamation of advanced materials and intricate patterning techniques presents a transformative prospect in the domains of wearable sensing and comprehensive human motion analysis.

2.
Small ; 20(6): e2306394, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37775949

ABSTRACT

Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.

3.
Nanoscale ; 15(19): 8881-8887, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37129198

ABSTRACT

While the new cubic phase of tin monosulfide, π-SnS, shows potential for various applications, not much work was focused on the phase transitions, thermal stability, and thermal properties of π-SnS. In this work, we addressed these issues using temperature-resolved in situ X-ray diffraction combined with thermo-gravimetric differential scanning calorimetry and thermo-gravimetric infrared spectroscopy. The cubic π-SnS phase nanoparticles capped with polyvinylpyrrolidone were proven stable for 12 hours at 400 °C, pointing out the possible utilization of this new cubic phase at elevated temperatures. At the same time, heating above this temperature resulted in a phase transition to the high-temperature orthorhombic ß-SnS phase. Subsequent cooling to room temperature led to an additional phase transition to the stable orthorhombic α-SnS phase. Interestingly, heating-induced phase transformation of π-SnS nanoparticles always resulted in ß-SnS, even at temperatures below the α- to ß-SnS equilibrium transition temperature. It was shown that surfactant decomposition and evaporation triggers the phase transition. Several thermal parameters were calculated, including the phase transition activation energy and the thermal expansion of the unit cell parameter of π-SnS.

4.
ACS Appl Mater Interfaces ; 15(12): 15668-15675, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36920349

ABSTRACT

We describe the unusual properties of γ-SnSe, a new orthorhombic binary phase in the tin monoselenide system. This phase exhibits an ultranarrow band gap under standard pressure and temperature conditions, leading to high conductivity under ambient conditions. Density functional calculations identified the similarity and difference between the new γ-SnSe phase and the conventional α-SnSe based on the electron localization function. Very good agreement was obtained for the band gap width between the band structure calculations and the experiment, and insight provided for the mechanism of reduction in the band gap. The unique properties of this material may render it useful for applications such as thermal imaging devices and solar cells.

5.
RSC Adv ; 12(1): 277-284, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35424479

ABSTRACT

Thin films of CuSe were deposited onto GaAs substrate. XRD showed that the as-deposited films were of the Klockmannite (CuSe - P63/mmc 194) phase with lattice parameters a 0 = b 0 = 0.3939 nm, c 0 = 1.7250 nm; however, electron diffraction in the TEM surprisingly indicated the ß-Cu2-x Se phase (Cu1.95Se - R3̄m 166) with lattice parameters a 0 = b 0 = 0.412 nm, c 0 = 2.045 nm. The discrepancy originated from the specimen preparation method, where the energy of the focused ion beam resulted in loss of selenium which drives a phase transition to ß-Cu2-x Se in this system. The same phase transition was observed also upon thermal treatment in vacuum, as well as when the 200 keV electron beam was focused on a powder sample in the TEM. The initial phase can be controlled to some extent by changing the composition of the reactants in solution, resulting in thin films of the cubic α-Cu2-x Se (Cu1.95Se - Fm3̄m) phase co-existing together with the ß-Cu2-x Se phase.

6.
Nanotechnology ; 32(10): 102001, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33305737

ABSTRACT

Colloidal synthesis of nanoparticles (NP) has advanced tremendously over the past 25 years, with an increasing number of research papers introducing nanomaterials with a variety of compositions, shapes, sizes, and phases. Although much progress has been achieved, commonly used synthetic procedures often fail to reproduce results, and the fine details of the syntheses are often disregarded. Reproducibility issues in synthesis can be ascribed to the effects of impurities, trace amounts of chemical moieties which significantly affect the reaction products. Impurities in NP synthesis are rarely reported or regularly studied, despite their impact, deleterious, or beneficial. This topical review discusses several case studies of colloidal NP synthesis where the sources and the chemistry of impurities are highlighted, and their role is examined.

7.
Nanotechnology ; 31(25): 255502, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32160600

ABSTRACT

Low cost short wavelength infrared (SWIR) photovoltaic (PV) detectors and solar cells are of very great interest, yet the main production technology today is based on costly epitaxial growth of InGaAs layers. In this study, layers of p-type, quantum confined (QC) PbS nano-domains (NDs) structure that were engineered to absorb SWIR light at 1550 nm (Eg = 0.8 eV) were fabricated from solution using the chemical bath deposition (CBD) technique. The layers were grown on top of two different n-type CdS intermediate layers (Eg = 2.4 eV) using two different CBD protocols on fluoride tin oxide (FTO) substrates. Two types of CdS/PbS heterojunction were obtained to serve as SWIR PV detectors. The two resulting devices showed similar photoluminescence behavior, but a profoundly different electrical response to SWIR illumination. One type of CdS/PbS heterojunction exhibited a PV response to SWIR light, while the other demonstrated a photo-response to SWIR light only under an applied bias. To clarify this intriguing phenomenon, and since the only difference between the two heterojunctions could be the doping level of the CdS layer, we measured the doping level of this layer by means of the surface photo voltage (SPV). This yielded different polarizations for the two devices, indicating different doping levels of the CdS for the two different fabrication protocols, which was also confirmed by Hall Effect measurements. We performed current voltage measurements under super bandgap illumination, with respect to CdS, and got an electrical response indicating a barrier free for holes transfer from the CdS to the PbS. The results indicate that the different response does, indeed, originate from variations in the band structures at the interface of the CdS/PbS heterojunction due to the different doping levels of the CdS. We found that, unlike solar cells or visible light detectors having similar structure, in SWIR photodetectors, a type I heterojunction is formed having a barrier at the interface that limits the injection of the photo-exited electrons from the QC-PbS to the CdS side. Higher n-doped CdS generates a narrow depletion region on the CdS side, with a spike like barrier that is narrow enough to enable tunneling current, leading to a PV current. Our results show that an external quantum efficiency (EQE) of ∼2% and an internal quantum efficiency (IQE) of ∼20% can be obtained, at zero bias, for CBD grown SWIR sensitive CdS/PbS-NDs heterojunctions.

8.
Nanoscale ; 11(36): 17104-17110, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31508641

ABSTRACT

New semiconducting metastable cubic phases have been recently discovered in the tin monosulfide and monoselenide systems. Surface energy calculations and experimental studies indicate that this cubic π-phase is stabilized by specific ligand adsorption on the surface. In this work, it is shown experimentally that the synthesis carried out using mixtures of oleylamine and oleylammonium chloride (OACl) surfactants results in the cubic phase, transforming the growth from orthorhombic to cubic nanoparticles with increasing OACl concentration up to a limiting point. Complementary ab initio calculations find that adsorbed ligands lower the surface energies for both the cubic phase and the orthorhombic phase, relative to the pristine surfaces. The decrease in the surface energy increases with ligand coverage. Stronger binding energies to the cubic phase suggest a higher coverage, and therefore preferential stabilization of this phase. Upon further increasing the coverage, the surface energy becomes negative, effectively destabilizing the particles in agreement with experimental observations. Bonding analysis shows that Cl bonds to Sn and replaces missing Sn-S bonds at the surface of the cubic structure. In the competing orthorhombic layered phase, Cl also bonds to a Sn atom but at the expense of one of the Sn-S bonds of this Sn atom. This observation can explain the trends of the surface energies. This combined experimental and computational analysis sheds light on the stabilization processes of these nano-materials and indicates the path to improve synthetic routes.

9.
Langmuir ; 35(48): 15855-15863, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31478659

ABSTRACT

The effect of impurities in colloidal synthesis of SnSe in oleylamine surfactant was investigated. Specifically, it was found that impurities such as water, hydrochloric acid, and carbon dioxide stabilize the recently discovered cubic phase of tin monoselenide, π-SnSe. We describe the reaction that releases HCl to the reaction medium through reaction of SnCl2 with moisture and its subsequent reaction with oleylamine, transforming it from neutral to charged surfactant. A similar path occurs in the case of CO2, which reacts with oleylamine to give charged oleylammonium-oleylcarbamate molecular pairs. By exposing the reaction to controlled concentrations of "beneficial contaminants", hitherto a major source of irreproducibility in this synthesis, we demonstrate phase and shape control from π-SnSe cubes to α-SnSe rods.

10.
Langmuir ; 35(48): 15825-15833, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31365262

ABSTRACT

Octadecylamine-coated CuS nanoparticles were designed and confirmed to play an important role in their electric response and boundary lubrication in the ester lubricant. For the case of CuS nanoparticles coated with crystalline surfactant, the surface potential is 18.47 ± 0.99 mV higher than with amorphous surfactant, owing to the random chain conformations of the octadecylamine molecules. When used as a lubricant additive, CuS nanoparticles (in the form of nanoplates or nanoarrays) with a crystalline surfactant were positively charged due to the presence of the amino headgroup in octadecylamine. The observed friction coefficient decreased from 0.18 to 0.09 and 0.05, respectively, when negative potential (for the copper lower pair) was applied across untreated CuS nanoparticles. However, thermally treated CuS nanoparticles showed good lubricating effect, but almost no effect of potential control since the amino groups were obscured by the disordered carbon chains, hindering electron transfer and weakening the response to externally applied electric field.

11.
Adv Mater ; 30(41): e1706285, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29944187

ABSTRACT

Cubic π-phase monochalcogenides (MX, M = Sn, Ge; X = S, Se) are an emerging new class of materials that has recently been discovered. Here, their thermodynamic stability, progress in synthetic routes, properties, and prospective applications are reviewed. The thermodynamic stability is demonstrated through density functional theory total energy and phonon spectra calculations, which show that the π-phase polytype is stable across the monochalcogenide family. To date, only π-phase tin monochalcogenides have been observed experimentally while π-phase Ge-monochalcogenides are predicted to be stable but are yet to be experimentally realized. Various synthetic preparation protocols of π-SnS and π-SnSe are described, focusing on surfactant-assisted nanoparticle synthesis and chemical deposition of thin films from aqueous-bath compositions. These techniques provide materials with different surface energies, which are likely to play a major role in stabilizing the π-phase in nanoscale materials. The properties of this newly discovered family of semiconducting materials are discussed in comparison with their conventional orthorhombic polymorphs. These could benefit a number of photovoltaic and optoelectronic applications since, apart from being cubic, they also possess characteristic advantages, such as moderately low toxicity and natural abundance.

12.
Sci Rep ; 7(1): 2780, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28584303

ABSTRACT

A new method to produce a model system for the study of radiation damage in non-radioactive materials is presented. The method is based on homogenously dissolving minute amounts of 228Th ions in thin films in a controllable manner using a small volume chemical bath deposition technique. This approach is demonstrated for PbS films. The properties of the PbS (228Th) solid solution film activity were investigated by monitoring the accompanying radioactive processes. Electrical resistivity studies were performed and decay-event damage accumulation was measured, followed by isochronal annealing which presented two annealing stages and another two sub-stages. This is the first report on self-irradiating damage studies in IV-VI semiconductors and the resulting films present a novel method for the analysis of dilute defect systems in semiconductor thin films.

13.
Nano Lett ; 17(5): 2778-2787, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28388052

ABSTRACT

We synthesized PbS core-CdS arm nanomultipod heterostructures (NMHs) that exhibit PbS{111}/CdS{0002} epitaxial relations. The PbS-CdS interface is chemically sharp as determined by aberration corrected transmission electron microscopy (TEM) and compared to density functional theory (DFT) calculations. Ensemble fluorescence measurements show quenching of the optical signal from the CdS arms indicating charge separation due to the heterojunction with PbS. A finite-element three-dimensional (3D) calculation of the Poisson equation shows a type-I heterojunction, which would prevent recombination in the CdS arm after optical excitation. To examine charge redistribution, we used off-axis electron holography (OAEH) in the TEM to map the electrostatic potential across an individual heterojunction. Indeed, a built-in potential of 500 mV is estimated across the junction, though as opposed to the thermal equilibrium calculations significant accumulation of positive charge at the CdS side of the interface is detected. We conclude that the NMH multipod geometry prevents efficient removal of generated charge carriers by the high energy electrons of the TEM. Simulations of generated electron-hole pairs in the insulated CdS arm of the NMH indeed show charge accumulation in agreement with the experimental measurements. Thus, we show that OAEH can be used as a complementary methodology to ensemble measurements by mapping the charge distribution in single NMHs with complex geometries.

14.
J Colloid Interface Sci ; 457: 43-51, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26151566

ABSTRACT

HYPOTHESIS: The optical properties of as-synthesized CuS nanoparticles are affected by shape, size and morphology and exhibit increased optical absorbance in the infrared range due to localized surface plasmon resonance (LSPR), which is also affected by these parameters. An additional parameter which affects the LSPR-related absorbance is crystallinity of the surfactant coating. EXPERIMENTS: CuS nanoparticles with varying morphologies were synthesized using a single source, single surfactant/solvent route. Thereafter, the particles were heat treated at temperatures varying from 130 °C to 230 °C with and without protective environment. Prior to and following the treatments, the particles were characterized using various techniques. Additionally, temperature resolved structural study and thermal analysis of the surfactant coating were performed. FINDINGS: We confirm that the previously reported effects of particle dimensions and chemical composition on LSPR apply for the synthesized particles. Moreover, we report an additional, previously unreported effect, connecting the crystal structure of the nanoparticle surfactant coating to LSPR. This in turn allows control over LSPR peak position by varying the degree of crystallinity of the capping surfactant layer. Thermal study of the surfactant coating showed gradual structural transition and high dependence of phase transformation on atmospheric environment during treatment.

15.
Nano Lett ; 15(3): 2174-9, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25710674

ABSTRACT

We report a new phase in the binary SnS system, obtained as highly symmetric nanotetrahedra. Due to the nanoscale size and minute amounts of these particles in the synthesis yield, the structure was exclusively solved using electron diffraction methods. The atomic model of the new phase (a = 11.7 Å, P2(1)3) was deduced and found to be associated with the rocksalt-type structure. Kramers-Kronig analysis predicted different optical and electronic properties for the new phase, as compared to α-SnS.

16.
J Colloid Interface Sci ; 430: 283-92, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24973702

ABSTRACT

HYPOTHESIS: The optical properties of cadmium sulfide (CdS) nanoparticles in suspension are affected by morphology and suspending solvent. Time dependent stability of these properties is solvent dependent and is affected by illumination conditions under which the suspension is stored. Moreover, minute amounts of dissolved oxygen are sufficient in order to facilitate photodegradation. EXPERIMENTS: CdS nanoparticles were synthesized with various shapes using a single precursor, single surfactant route. Thereafter, their optical properties were measured from chloroform and toluene suspensions following periods of up to 4 months, under illumination conditions, which included dark storage, visible light and UV irradiation. FINDINGS: The changes in optical properties, best shown by the photoluminescence (PL), reveal an intricate behavior, which is dependent upon both the chemical environment and illumination conditions. This is mainly manifested in two ways: the first is an initial intensification of the PL, while later on gradual degradation of the particles and their optical activity are observed. Moreover, a distinct variation of surface state emission was demonstrated for each solvent. Additionally, a solvent dependent variation of the final photodegraded state was observed. Based on these observations, we describe the photodegradation route for CdS nanoparticles in chloroform suspensions.

17.
Nano Lett ; 13(2): 409-15, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23297701

ABSTRACT

Two-dimensional (2D) sheets are currently in the spotlight of nanotechnology owing to high-performance device fabrication possibilities. Building a free-standing quantum sheet with controlled morphology is challenging when large planar geometry and ultranarrow thickness are simultaneously concerned. Coalescence of nanowires into large single-crystalline sheet is a promising approach leading to large, molecularly thick 2D sheets with controlled planar morphology. Here we report on a bottom-up approach to fabricate high-quality ultrathin 2D single crystalline sheets with well-defined rectangular morphology via collective coalescence of PbS nanowires. The ultrathin sheets are strictly rectangular with 1.8 nm thickness, 200-250 nm width, and 3-20 µm length. The sheets show high electrical conductivity at room and cryogenic temperatures upon device fabrication. Density functional theory (DFT) calculations reveal that a single row of delocalized orbitals of a nanowire is gradually converted into several parallel conduction channels upon sheet formation, which enable superior in-plane carrier conduction.


Subject(s)
Lead/chemistry , Nanowires/chemistry , Sulfides/chemistry , Nanotechnology , Quantum Theory
18.
Langmuir ; 28(43): 15119-23, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23057722

ABSTRACT

We demonstrate control over the orientation of PbS nanoparticles by way of directed assembly, which in turn affects the crystal structure of alkylamine surfactants such as octadecylamine (ODA, C(18)H(37)NH(2)) and hexadecylamine (HDA, C(16)H(33)NH(2)). This directed assembly method results in the arrangement of PbS nanoparticles with a well-defined epitaxial orientation on lamellar alkylamine sheets, which undertake a new crystal structure to accommodate these relations. Understanding these surfactant-nanoparticle inter-relations is very instrumental in understanding surfactant-assisted nanoparticle synthesis and assembly.

19.
Nanoscale ; 4(24): 7655-63, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23070093

ABSTRACT

We report on the oriented nucleation of CdS nanocrystals on well-defined polydiacetylene Langmuir film templates. Nucleation on the red phase of polydiacetylene resulted in ordered linear arrays of CdS nanocrystals that are aligned with respect to the template. High resolution transmission electron microscopy showed crystalline particles of ~5 to 8 nm size. Selected area electron diffraction micrographs showed spot patterns which are attributed to the well-defined orientations of both polymorphs: the cubic zinc blende and the hexagonal wurtzite polymorphs of CdS. We present a unique growth mechanism where oriented nucleation of CdS on the polydiacetylene template initially takes place in the zinc blende phase. Beyond a certain size threshold, growth proceeds in the more stable wurtzite phase. This transformation keeps the stacking direction of the close packed planes, while altering only their stacking sequence. Notably, size-confinement effects were observed in electron diffraction patterns from the wurtzite phase. These effects originated from off-axis planes that do not fulfill the Bragg conditions, yet their elongated Bragg rods intersect with the Ewald sphere, giving rise to unexpected reflections.

20.
Langmuir ; 28(41): 14609-17, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-22978680

ABSTRACT

Self-assembled monolayers (SAMs) are known to form on a variety of substrates either via chemisorption (i.e., through chemical interactions such as a covalent bond) or physisorption (i.e., through physical interactions such as van der Waals forces or "ionic" bonds). We have studied the behavior and effects of water on the structures and surface energies of both chemisorbed octadecanethiol and physisorbed octadecylamine SAMs on GaAs using a number of complementary techniques including "dynamic" contact angle measurements (with important time and rate-dependent effects), AFM, and electron microscopy. We conclude that both molecular overturning and submolecular structural changes occur over different time scales when such SAMs are exposed to water. These results provide new insights into the time-dependent interactions between surfaces and colloids functionalized with SAMs when synthesized in or exposed to high humidity or bulk water or wetted by water. The study has implications for a wide array of phenomena and applications such as adhesion, friction/lubrication and wear (tribology), surfactant-solid surface interactions, the organization of surfactant-coated nanoparticles, etc.

SELECTION OF CITATIONS
SEARCH DETAIL
...