Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Neurol ; 12: 691631, 2021.
Article in English | MEDLINE | ID: mdl-34354664

ABSTRACT

After subarachnoid hemorrhage (SAH), up to 95% of surviving patients suffer from post-SAH syndrome, which includes cognitive deficits with impaired memory, executive functions, and emotional disturbances. Although these long-term cognitive deficits are thought to result from damage to temporomesial-hippocampal areas, the underlying mechanisms remain unknown. To fill this gap in knowledge, we performed a systematic RNA sequencing screen of the hippocampus in a mouse model of SAH. SAH was induced by perforation of the circle of Willis in mice. Four days later, hippocampal RNA was obtained from SAH and control (sham perforation) mice. Next-generation RNA sequencing was used to determine differentially expressed genes in the whole bilateral hippocampi remote from the SAH bleeding site. Functional analyses and clustering tools were used to define molecular pathways. Differential gene expression analysis detected 642 upregulated and 398 downregulated genes (false discovery rate <0.10) in SAH compared to Control group. Functional analyses using IPA suite, Gene Ontology terms, REACTOME pathways, and MsigDB Hallmark gene set collections revealed suppression of oligodendrocytes/myelin related genes, and overexpression of genes related to complement system along with genes associated with innate and adaptive immunity, and extracellular matrix reorganization. Interferon regulatory factors, TGF-ß1, and BMP were identified as major orchestrating elements in the hippocampal tissue response. The MEME-Suite identified binding motifs of Krüppel-like factors, zinc finger transcription factors, and interferon regulatory factors as overrepresented DNA promoter motifs. This study provides the first systematic gene and pathway database of the hippocampal response after SAH. Our findings suggest that damage of the entorhinal cortex by subarachnoid blood may remotely trigger specific hippocampal responses, which include suppression of oligodendrocyte function. Identification of these novel pathways may allow for development of new therapeutic approaches for post-SAH cognitive deficits.

2.
Front Neurosci ; 13: 541, 2019.
Article in English | MEDLINE | ID: mdl-31191233

ABSTRACT

We observed fine fibrin deposition along the paravascular spaces in naive animals, which increased dramatically following subarachnoid hemorrhage (SAH). Following SAH, fibrin deposits in the areas remote from the hemorrhage. Traditionally it is thought that fibrinogen enters subarachnoid space through damaged blood brain barrier. However, deposition of fibrin remotely from hemorrhage suggests that fibrinogen chains Aα, Bß, and γ can originate in the brain. Here we demonstrate in vivo and in vitro that astroglia and neurons are capable of expression of fibrinogen chains. SAH in mice was induced by the filament perforation of the circle of Willis. Four days after SAH animals were anesthetized, transcardially perfused and fixed. Whole brain was processed for immunofluorescent (IF) analysis of fibrin deposition on the brain surface or in brains slices processed for fibrinogen chains Aα, Bß, γ immunohistochemical detection. Normal human astrocytes were grown media to confluency and stimulated with NOC-18 (100 µM), TNF-α (100 nM), ATP-γ-S (100 µM) for 24 h. Culture was fixed and washed/permeabilized with 0.1% Triton and processed for IF. Four days following SAH fibrinogen chains Aα IF associated with glia limitans and superficial brain layers increased 3.2 and 2.5 times (p < 0.05 and p < 0.01) on the ventral and dorsal brain surfaces respectively; fibrinogen chains Bß increased by 3 times (p < 0.01) on the dorsal surface and fibrinogen chain γ increased by 3 times (p < 0.01) on the ventral surface compared to sham animals. Human cultured astrocytes and neurons constitutively expressed all three fibrinogen chains. Their expression changed differentially when exposed for 24 h to biologically significant stimuli: TNFα, NO or ATP. Western blot and RT-qPCR confirmed presence of the products of the appropriate molecular weight and respective mRNA. We demonstrate for the first time that mouse and human astrocytes and neurons express fibrinogen chains suggesting potential presence of endogenous to the brain fibrinogen chains differentially changing to biologically significant stimuli. SAH is followed by increased expression of fibrinogen chains associated with glia limitans remote from the hemorrhage. We conclude that brain astrocytes and neurons are capable of production of fibrinogen chains, which may be involved in various normal and pathological processes.

3.
J Cereb Blood Flow Metab ; 38(5): 793-808, 2018 05.
Article in English | MEDLINE | ID: mdl-28350198

ABSTRACT

Subarachnoid hemorrhage (SAH) in 95% of cases results in long-term disabilities due to brain damage, pathogenesis of which remains uncertain. Hindrance of cerebrospinal fluid (CSF) circulation along glymphatic pathways is a possible mechanism interrupting drainage of damaging substances from subarachnoid space and parenchyma. We explored changes in CSF circulation at different time following SAH and possible role of brain tissue factor (TF). Fluorescent solute and fluorescent microspheres injected into cisterna magna were used to track CSF flow in mice. SAH induced by perforation of circle of Willis interrupted CSF flow for up to 30 days. Block of CSF flow did not correlate with the size of hemorrhage. Following SAH, fibrin deposits were observed on the brain surface including areas without visible blood. Block of astroglia-associated TF by intracerebroventricular administration of specific antibodies increased size of hemorrhage, decreased fibrin deposition and facilitated spread of fluorophores in sham/naïve animals. We conclude that brain TF plays an important role in localization of hemorrhage and also regulates CSF flow under normal conditions. Targeting of the TF system will allow developing of new therapeutic approaches to the treatment of SAH and pathologies related to CSF flow such as hydrocephalus.


Subject(s)
Cerebrospinal Fluid/metabolism , Subarachnoid Hemorrhage/cerebrospinal fluid , Subarachnoid Hemorrhage/metabolism , Thromboplastin/metabolism , Animals , Brain/pathology , Brain/physiopathology , Male , Mice , Mice, Inbred C57BL , Subarachnoid Hemorrhage/pathology
4.
Brain Sci ; 7(10)2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28934119

ABSTRACT

Excitation of intrinsic neurons of cerebellar fastigial nucleus (FN) renders brain tolerant to local and global ischemia. This effect reaches a maximum 72 h after the stimulation and lasts over 10 days. Comparable neuroprotection is observed following sublethal global brain ischemia, a phenomenon known as preconditioning. We hypothesized that FN may participate in the mechanisms of ischemic preconditioning as a part of the intrinsic neuroprotective mechanism. To explore potential significance of FN neurons in brain ischemic tolerance we lesioned intrinsic FN neurons with excitotoxin ibotenic acid five days before exposure to 20 min four-vessel occlusion (4-VO) global ischemia while analyzing neuronal damage in Cornu Ammoni area 1 (CA1) hippocampal area one week later. In FN-lesioned animals, loss of CA1 cells was higher by 22% compared to control (phosphate buffered saline (PBS)-injected) animals. Moreover, lesion of FN neurons increased morbidity following global ischemia by 50%. Ablation of FN neurons also reversed salvaging effects of five-minute ischemic preconditioning on CA1 neurons and morbidity, while ablation of cerebellar dentate nucleus neurons did not change effect of ischemic preconditioning. We conclude that FN is an important part of intrinsic neuroprotective system, which participates in ischemic preconditioning and may participate in naturally occurring neuroprotection, such as "diving response".

5.
Sci Rep ; 7(1): 6792, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28754973

ABSTRACT

Following traumatic brain injury (TBI), ischemia and hypoxia play a major role in further worsening of the damage, a process referred to as 'secondary injury'. Protecting neurons from causative factors of secondary injury has been the guiding principle of modern TBI management. Stimulation of trigeminal nerve induces pressor response and improves cerebral blood flow (CBF) by activating the rostral ventrolateral medulla. Moreover, it causes cerebrovasodilation through the trigemino-cerebrovascular system and trigemino-parasympathetic reflex. These effects are capable of increasing cerebral perfusion, making trigeminal nerve stimulation (TNS) a promising strategy for TBI management. Here, we investigated the use of electrical TNS for improving CBF and brain oxygen tension (PbrO2), with the goal of decreasing secondary injury. Severe TBI was produced using controlled cortical impact (CCI) in a rat model, and TNS treatment was delivered for the first hour after CCI. In comparison to TBI group, TBI animals with TNS treatment demonstrated significantly increased systemic blood pressure, CBF and PbrO2 at the hyperacute phase of TBI. Furthermore, rats in TNS-treatment group showed significantly reduced brain edema, blood-brain barrier disruption, lesion volume, and brain cortical levels of TNF-α and IL-6. These data provide strong early evidence that TNS could be an effective neuroprotective strategy.


Subject(s)
Brain Injuries, Traumatic/therapy , Electric Stimulation Therapy/methods , Trigeminal Nerve/physiology , Animals , Cerebrovascular Circulation , Interleukin-6/metabolism , Male , Oxygen Consumption , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
6.
Front Neurol ; 7: 157, 2016.
Article in English | MEDLINE | ID: mdl-27708614

ABSTRACT

Diving response (DR) is a powerful integrative response targeted toward survival of the hypoxic/anoxic conditions. Being present in all animals and humans, it allows to survive adverse conditions like diving. Earlier, we discovered that forehead stimulation affords neuroprotective effect, decreasing infarction volume triggered by permanent occlusion of the middle cerebral artery in rats. We hypothesized that cold stimulation of the forehead induces DR in rats, which, in turn, exerts neuroprotection. We compared autonomic [AP, heart rate (HR), cerebral blood flow (CBF)] and EEG responses to the known DR-triggering stimulus, ammonia stimulation of the nasal mucosa, cold stimulation of the forehead, and cold stimulation of the glabrous skin of the tail base in anesthetized rats. Responses in AP, HR, CBF, and EEG to cold stimulation of the forehead and ammonia vapors instillation into the nasal cavity were comparable and differed significantly from responses to the cold stimulation of the tail base. Excitotoxic lesion of the subthalamic vasodilator area (SVA), which is known to participate in CBF regulation and to afford neuroprotection upon excitation, failed to affect autonomic components of the DR evoked by forehead cold stimulation or nasal mucosa ammonia stimulation. We conclude that cold stimulation of the forehead triggers physiological response comparable to the response evoked by ammonia vapor instillation into nasal cavity, which is considered as stimulus triggering protective DR. These observations may explain the neuroprotective effect of the forehead stimulation. Data demonstrate that SVA does not directly participate in the autonomic adjustments accompanying DR; however, it is involved in diving-evoked modulation of EEG. We suggest that forehead stimulation can be employed as a stimulus capable of triggering oxygen-conserving DR and can be used for neuroprotective therapy.

7.
Front Neurosci ; 10: 382, 2016.
Article in English | MEDLINE | ID: mdl-27594826

ABSTRACT

Multimodal monitoring of brain activity, physiology, and neurochemistry is an important approach to gain insight into brain function, modulation, and pathology. With recent progress in micro- and nanotechnology, micro-nano-implants have become important catalysts in advancing brain research. However, to date, only a limited number of brain parameters have been measured simultaneously in awake animals in spite of significant recent progress in sensor technology. Here we have provided a cost and time effective approach to designing a headstage to conduct a multimodality brain monitoring in freely moving animals. To demonstrate this method, we have designed a user-configurable headstage for our micromachined multimodal neural probe. The headstage can reliably record direct-current electrocorticography (DC-ECoG), brain oxygen tension (PbrO2), cortical temperature, and regional cerebral blood flow (rCBF) simultaneously without significant signal crosstalk or movement artifacts for 72 h. Even in a noisy environment, it can record low-level neural signals with high quality. Moreover, it can easily interface with signal conditioning circuits that have high power consumption and are difficult to miniaturize. To the best of our knowledge, this is the first time where multiple physiological, biochemical, and electrophysiological cerebral variables have been simultaneously recorded from freely moving rats. We anticipate that the developed system will aid in gaining further insight into not only normal cerebral functioning but also pathophysiology of conditions such as epilepsy, stroke, and traumatic brain injury.

8.
Biosens Bioelectron ; 77: 62-8, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26386904

ABSTRACT

We report a novel single neural probe for real-time simultaneous monitoring of multiple neurochemicals and direct-current electrocorticography (DC-ECoG). A major advance of this probe is the inclusion of two iridium oxide reference electrodes to improve sensor accuracy. The ECoG reference electrode is identical to the ECoG recording electrodes to significantly improve DC stability, while the reference for electrochemical sensors has 10-fold lower polarization rate to minimize the small current-induced drift in the reference electrode potential. In vitro, the single probe selectively measured oxygen (r(2)=0.985 ± 0.01, concentration range=0-60 mmHg, limit of detection=0.4 ± 0.07 mmHg) and glucose (r(2)=0.989 ± 0.009, concentration range=0-4mM, limit of detection=31 ± 8 µM) in a linear fashion. The performance of the single probe was assessed in an in vivo needle prick model to mimic sequelae of traumatic brain injury. It successfully monitored the theoretically expected transient brain oxygen, glucose, and DC potential changes during the passage of spreading depolarization (SD) waves. We envision that the developed probe can be used to decipher the cause-effect relationships between multiple variables of brain pathophysiology with the high temporal and spatial resolutions that it provides.


Subject(s)
Action Potentials/physiology , Electrocorticography/instrumentation , Electrodes, Implanted , Microelectrodes , Nerve Tissue Proteins/metabolism , Parietal Lobe/physiology , Animals , Computer Systems , Conductometry/instrumentation , Equipment Design , Equipment Failure Analysis , Male , Neurochemistry/instrumentation , Parietal Lobe/cytology , Rats , Rats, Sprague-Dawley
9.
J Neural Eng ; 13(1): 016008, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26655565

ABSTRACT

OBJECTIVE: Direct-current electrocorticography (DC-ECoG) allows a more complete characterization of brain states and pathologies than traditional alternating-current recordings (AC-ECoG). However, reliable recording of DC signals is challenging because of electrode polarization-induced potential drift, particularly at low frequencies and for more conducting materials. Further challenges arise as electrode size decreases, since impedance is increased and the potential drift is augmented. While microelectrodes have been investigated for AC-ECoG recordings, little work has addressed microelectrode properties for DC-signal recording. In this paper, we investigated several common microelectrode materials used in biomedical application for DC-ECoG. APPROACH: Five of the most common materials including gold (Au), silver/silver chloride (Ag/AgCl), platinum (Pt), Iridium oxide (IrOx), and platinum-iridium oxide (Pt/IrOx) were investigated for electrode diameters of 300 µm. The critical characteristics such as polarization impedance, AC current-induced polarization, long-term stability and low-frequency noise were studied in vitro (0.9% saline). The two most promising materials, Pt and Pt/lrOx were further investigated in vivo by recording waves of spreading depolarization, one of the most important applications for DC-ECoG in clinical and basic science research. MAIN RESULTS: Our experimental results indicate that IrOx-based microelectrodes, particularly with composite layers of nanostructures, are excellent in all of the common evaluation characteristics both in vitro and in vivo and are most suitable for multimodal monitoring applications. Pt electrodes suffer high current-induced polarization, but have acceptable long-term stability suitable for DC-ECoG. Major significance. The results of this study provide quantitative data on the electrical properties of microelectrodes with commonly-used materials and will be valuable for development of neural recordings inclusive of low frequencies.


Subject(s)
Biocompatible Materials/chemistry , Cerebral Cortex/physiology , Electrocorticography/instrumentation , Electrodes, Implanted , Metals/chemistry , Microelectrodes , Animals , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Male , Materials Testing , Rats , Rats, Sprague-Dawley , Signal-To-Noise Ratio
10.
Biomed Microdevices ; 17(5): 87, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26256480

ABSTRACT

Cerebral blood flow (CBF) plays a critical role in the exchange of nutrients and metabolites at the capillary level and is tightly regulated to meet the metabolic demands of the brain. After major brain injuries, CBF normally decreases and supporting the injured brain with adequate CBF is a mainstay of therapy after traumatic brain injury. Quantitative and localized measurement of CBF is therefore critically important for evaluation of treatment efficacy and also for understanding of cerebral pathophysiology. We present here an improved thermal flow microsensor and its operation which provides higher accuracy compared to existing devices. The flow microsensor consists of three components, two stacked-up thin film resistive elements serving as composite heater/temperature sensor and one remote resistive element for environmental temperature compensation. It operates in constant-temperature mode (~2 °C above the medium temperature) providing 20 ms temporal resolution. Compared to previous thermal flow microsensor based on self-heating and self-sensing design, the sensor presented provides at least two-fold improvement in accuracy in the range from 0 to 200 ml/100 g/min. This is mainly achieved by using the stacked-up structure, where the heating and sensing are separated to improve the temperature measurement accuracy by minimization of errors introduced by self-heating.


Subject(s)
Blood Flow Velocity/physiology , Cerebrovascular Circulation/physiology , Conductometry/instrumentation , Rheology/instrumentation , Thermography/instrumentation , Transducers , Animals , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Heating/instrumentation , Male , Miniaturization , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity
11.
Article in English | MEDLINE | ID: mdl-23367297

ABSTRACT

A novel first-generation Clark-type biosensor platform that can eliminate the oxygen dependence has been presented. Sufficient oxygen to drive the enzymatic reaction under hypoxic conditions was produced by encapsulated oxygen generating biomaterial, calcium peroxide. The catalase immobilized in chitosan matrix was coated on top of the groove to decompose residual hydrogen peroxide to oxygen. A glucose biosensor was developed on the proposed platform as proof of concept. Under hypoxic conditions, developed glucose biosensors maintained their sensitivity response around 84% of their response at oxygen tension of 151 mmHg. The sensitivity deviation was less than 5.3% with the oxygen tension traversed from 0 to 57 mmHg. Under oxygen tension of 8.3 mmHg, the sensitivity of 37.130 nA/mM and the linear coefficient of R(2)=0.9968 were obtained with the glucose concentration varying from 0.05 to 10mM. This new platform is particularly attractive for injured brain monitoring.


Subject(s)
Biocompatible Materials , Biosensing Techniques , Brain/metabolism , Electrochemical Techniques , Enzymes, Immobilized/metabolism , Glucose Oxidase/metabolism , Oxygen/metabolism , Microelectrodes
12.
Neurosci Lett ; 368(1): 92-5, 2004 Sep 16.
Article in English | MEDLINE | ID: mdl-15342141

ABSTRACT

In Sprague-Dawley rats symmetrical sites of the parietal cortex were microinjected with ibotenic acid (IBO, 10microg in 1microl) to lesion local neurons or with saline (1microl). Five days later, changes of cortical cerebral blood flow (CBF) in response to hypoxia and stimulation of the subthalamic vasodilator area (SVA) were measured using laser-Doppler flowmetry (LDF). The baseline CBF over the IBO- and saline-injected cortical sites did not differ significantly, but spontaneous waves of CBF were abolished over the lesioned sites. Elevations of CBF evoked by hypoxia or stimulation of SVA were attenuated by 54% and 88%, respectively (P < 0.05) over the lesioned sites, compared to saline-injected or non-injected sites. Hypercarbic cerebrovasodilation was comparable over all sites. We conclude that the SVA-evoked increase of CBF and about 50% of the hypoxia-evoked increase of CBF are mediated by excitation of cortical neurons.


Subject(s)
Cerebral Cortex/physiology , Cerebrovascular Circulation/physiology , Hypoxia/physiopathology , Neurons/physiology , Subthalamic Nucleus/physiology , Vasodilation/physiology , Animals , Carbon Dioxide/pharmacology , Cerebral Cortex/cytology , Electric Stimulation , Electroencephalography , Excitatory Amino Acid Agonists/pharmacology , Ibotenic Acid/pharmacology , Male , Rats , Rats, Sprague-Dawley , Stereotaxic Techniques , Subthalamic Nucleus/cytology
13.
Brain Res ; 994(2): 135-45, 2003 Dec 24.
Article in English | MEDLINE | ID: mdl-14642639

ABSTRACT

We investigated whether selective stimulation of neurons of the sympathoinhibitory ventral periaqueductal gray (VPAG), or sympathoexcitatory dorsal periaqueductal gray (DPAG), differentially modulates CBF and EEG and exerts neuroprotection. Electrical stimulation of either regions of PAG comparably elevated AP and CBF, whereas chemical stimulation with the D,L-homocysteine produced either sympathoinhibition accompanied by decrease in CBF from ventral region or sympathoexcitation accompanied by increase in CBF from dorsal region in nonspinalized rats. The CBF effects evoked from DPAG and VPAG by chemical stimulation were preserved in spinalized rats supporting that the evoked CBF responses result directly from stimulation and are not secondary to AP changes. Stimulation of either region, whether chemical or electrical, synchronized the EEG. To explore whether PAG stimulation might protect the brain against ischemic injury, in other rats the VPAG or DPAG were stimulated for 1 h (50 Hz, 1 s on/1 s off, 75-100 microA) and the middle cerebral artery occluded 72 h later. Stimulation of the DPAG, but not VPAG, significantly reduced infarction volumes relative to sham-stimulated controls as determined 24 h after occlusion. Elevations of AP and CBF did not differ between groups. We conclude: (a). intrinsic neurons of D- and VPAG differentially regulate CBF; (b). neurons of DPAG are neuroprotective independently of changes in CBF and/or AP. The DPAG effect on infarct volume may be related to the central neuroprotective pathway evoked by stimulation of the cerebellar FN.


Subject(s)
Brain Infarction/therapy , Cerebrovascular Circulation/radiation effects , Electric Stimulation , Hypertension/physiopathology , Periaqueductal Gray/radiation effects , Vasodilation/physiology , Analysis of Variance , Animals , Blood Gas Analysis/methods , Blood Glucose , Blood Pressure/drug effects , Blood Pressure/physiology , Brain Infarction/physiopathology , Carbon Dioxide/blood , Electric Stimulation/methods , Electroencephalography/methods , Hematocrit/methods , Homocysteine/pharmacology , Hydrogen-Ion Concentration , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/physiopathology , Laser-Doppler Flowmetry/methods , Male , Microinjections , Oxygen/blood , Periaqueductal Gray/physiopathology , Rats , Rats, Inbred F344 , Rats, Inbred SHR , Rats, Sprague-Dawley , Regional Blood Flow/physiology , Spinal Cord Injuries/physiopathology , Stimulation, Chemical , Time Factors
14.
Cell Mol Neurobiol ; 23(4-5): 651-63, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14514022

ABSTRACT

1. Stimulation of the rostral-ventromedial pole of the cerebellar fastigial nucleus exerts powerful effects on systemic and cerebral circulation. 2. Excitation of fibers passing through the fastigial nucleus evokes sympathoactivation and increases in arterial pressure. 3. Increase in cerebral blood flow evoked by excitation of fibers passing through the FN is mediated by intrinsic brain mechanisms independently of metabolism. 4. Excitation of the fastigial nucleus neurons in contrast decreases arterial pressure and cerebral blood flow. The latter probably is secondary to the suppression of brain metabolism. 5. Excitation of the fastigial nucleus neurons significantly decreases damaging effects of focal and global ischemia on the brain. 6. The fastigial nucleus-evoked neuroprotection can be conditioned: 1-h stimulation protects the brain for up to 3 weeks. 7. Other brain structures such as subthalamic cerebrovasodilator area and dorsal periaqueductal gray matter also produce long-lasting brain salvage when stimulated. 8. More than one mechanism may account for neurogenic neuroprotection. 9. Early neuroprotection, which develops immediately after the stimulation, involves opening of potassium channels. 10. Delayed long-lasting neuroprotection may involve changes in genes expression resulting in suppression of inflammatory reaction and apoptotic cascade. 11. It is conceivable that intrinsic neuroprotective system exists within the brain, which renders the brain more tolerant to adverse stimuli when activated. 12. Knowledge of the mechanisms of neurogenic neuroprotection will allow developing new neuroprotective approaches.


Subject(s)
Brain Infarction/physiopathology , Brain Ischemia/physiopathology , Cerebellar Nuclei/physiology , Cerebrovascular Circulation/physiology , Neural Pathways/physiology , Animals , Apoptosis/physiology , Cell Survival/physiology , Humans , Immune Tolerance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...