Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38559044

ABSTRACT

The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa , a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging. We adapted PROSPECT 1 , a target-based, whole-cell screening strategy, to discover small molecule probes that kill P. aeruginosa mutants depleted for essential proteins localized at the OM. We identified BRD1401, a small molecule that has specific activity against a P. aeruginosa mutant depleted for the essential lipoprotein, OprL. Genetic and chemical biological studies identified that BRD1401 acts by targeting the OM ß-barrel protein OprH to disrupt its interaction with LPS and increase membrane fluidity. Studies with BRD1401 also revealed an interaction between OprL and OprH, directly linking the OM with peptidoglycan. Thus, a whole-cell, multiplexed screen can identify species-specific chemical probes to reveal novel pathogen biology.

2.
mBio ; 14(2): e0352322, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36786604

ABSTRACT

The ability to measure neutralizing antibodies on large scale can be important for understanding features of the natural history and epidemiology of infection, as well as an aid in determining the efficacy of interventions, particularly in outbreaks such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Because of the assay's rapid scalability and high efficiency, serology measurements that quantify the presence rather than function of serum antibodies often serve as proxies of immune protection. Here, we report the development of a high-throughput, automated fluorescence-based neutralization assay using SARS-CoV-2 virus to quantify neutralizing antibody activity in patient specimens. We performed large-scale testing of over 19,000 COVID-19 convalescent plasma (CCP) samples from patients who had been infected with SARS-CoV-2 between March and August 2020 across the United States. The neutralization capacity of the samples was moderately correlated with serological measurements of anti-receptor-binding domain (RBD) IgG levels. The neutralizing antibody levels within these convalescent-phase serum samples were highly variable against the original USA-WA1/2020 strain with almost 10% of individuals who had had PCR-confirmed SARS-CoV-2 infection having no detectable antibodies either by serology or neutralization, and ~1/3 having no or low neutralizing activity. Discordance between neutralization and serology measurements was mainly due to the presence of non-IgG RBD isotypes. Meanwhile, natural infection with the earliest SARS-CoV-2 strain USA-WA1/2020 resulted in weaker neutralization of subsequent B.1.1.7 (alpha) and the B.1.351 (beta) variants, with 88% of samples having no activity against the BA.1 (omicron) variant. IMPORTANCE The ability to directly measure neutralizing antibodies on live SARS-CoV-2 virus in individuals can play an important role in understanding the efficacy of therapeutic interventions or vaccines. In contrast to functional neutralization assays, serological assays only quantify the presence of antibodies as a proxy of immune protection. Here, we have developed a high-throughput, automated neutralization assay for SARS-CoV-2 and measured the neutralizing activity of ~19,000 COVID-19 convalescent plasma (CCP) samples collected across the United States between March and August of 2020. These data were used to support the FDA's interpretation of CCP efficacy in patients with SARS-CoV-2 infection and their issuance of emergency use authorization of CCP in 2020.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Humoral , COVID-19 Serotherapy , Antibodies, Neutralizing , Antibodies, Viral , Neutralization Tests , Spike Glycoprotein, Coronavirus , COVID-19 Testing
3.
Nature ; 571(7763): 72-78, 2019 07.
Article in English | MEDLINE | ID: mdl-31217586

ABSTRACT

New antibiotics are needed to combat rising levels of resistance, with new Mycobacterium tuberculosis (Mtb) drugs having the highest priority. However, conventional whole-cell and biochemical antibiotic screens have failed. Here we develop a strategy termed PROSPECT (primary screening of strains to prioritize expanded chemistry and targets), in which we screen compounds against pools of strains depleted of essential bacterial targets. We engineered strains that target 474 essential Mtb genes and screened pools of 100-150 strains against activity-enriched and unbiased compound libraries, probing more than 8.5 million chemical-genetic interactions. Primary screens identified over tenfold more hits than screening wild-type Mtb alone, with chemical-genetic interactions providing immediate, direct target insights. We identified over 40 compounds that target DNA gyrase, the cell wall, tryptophan, folate biosynthesis and RNA polymerase, as well as inhibitors that target EfpA. Chemical optimization yielded EfpA inhibitors with potent wild-type activity, thus demonstrating the ability of PROSPECT to yield inhibitors against targets that would have eluded conventional drug discovery.


Subject(s)
Antitubercular Agents/classification , Antitubercular Agents/isolation & purification , Drug Discovery/methods , Gene Deletion , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Small Molecule Libraries/pharmacology , Antitubercular Agents/pharmacology , DNA Gyrase/metabolism , Drug Resistance, Microbial , Folic Acid/biosynthesis , Molecular Targeted Therapy , Mycobacterium tuberculosis/cytology , Mycobacterium tuberculosis/enzymology , Mycolic Acids/metabolism , Reproducibility of Results , Small Molecule Libraries/classification , Small Molecule Libraries/isolation & purification , Substrate Specificity , Topoisomerase II Inhibitors/isolation & purification , Topoisomerase II Inhibitors/pharmacology , Tryptophan/biosynthesis , Tuberculosis/drug therapy , Tuberculosis/microbiology
4.
PLoS Pathog ; 13(5): e1006363, 2017 May.
Article in English | MEDLINE | ID: mdl-28505176

ABSTRACT

A key to the pathogenic success of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the capacity to survive within host macrophages. Although several factors required for this survival have been identified, a comprehensive knowledge of such factors and how they work together to manipulate the host environment to benefit bacterial survival are not well understood. To systematically identify Mtb factors required for intracellular growth, we screened an arrayed, non-redundant Mtb transposon mutant library by high-content imaging to characterize the mutant-macrophage interaction. Based on a combination of imaging features, we identified mutants impaired for intracellular survival. We then characterized the phenotype of infection with each mutant by profiling the induced macrophage cytokine response. Taking a systems-level approach to understanding the biology of identified mutants, we performed a multiparametric analysis combining pathogen and host phenotypes to predict functional relationships between mutants based on clustering. Strikingly, mutants defective in two well-known virulence factors, the ESX-1 protein secretion system and the virulence lipid phthiocerol dimycocerosate (PDIM), clustered together. Building upon the shared phenotype of loss of the macrophage type I interferon (IFN) response to infection, we found that PDIM production and export are required for coordinated secretion of ESX-1-substrates, for phagosomal permeabilization, and for downstream induction of the type I IFN response. Multiparametric clustering also identified two novel genes that are required for PDIM production and induction of the type I IFN response. Thus, multiparametric analysis combining host and pathogen infection phenotypes can be used to identify novel functional relationships between genes that play a role in infection.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Mycobacterium tuberculosis/pathogenicity , Phagosomes/microbiology , Tuberculosis/microbiology , Animals , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Cell Line , Cytokines/immunology , Cytokines/metabolism , Gene Library , Host-Pathogen Interactions , Macrophages/immunology , Macrophages/microbiology , Mice , Mutation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/immunology , Phagosomes/immunology , Phenotype , Tuberculosis/immunology , Virulence
5.
ACS Chem Biol ; 8(10): 2224-34, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-23898841

ABSTRACT

During Mycobacterium tuberculosis infection, a population of bacteria is thought to exist in a nonreplicating state, refractory to antibiotics, which may contribute to the need for prolonged antibiotic therapy. The identification of inhibitors of the nonreplicating state provides tools that can be used to probe this hypothesis and the physiology of this state. The development of such inhibitors also has the potential to shorten the duration of antibiotic therapy required. Here we describe the development of a novel nonreplicating assay amenable to high-throughput chemical screening coupled with secondary assays that use carbon starvation as the in vitro model. Together these assays identify compounds with activity against replicating and nonreplicating M. tuberculosis as well as compounds that inhibit the transition from nonreplicating to replicating stages of growth. Using these assays we successfully screened over 300,000 compounds and identified 786 inhibitors of nonreplicating M. tuberculosis In order to understand the relationship among different nonreplicating models, we tested 52 of these molecules in a hypoxia model, and four different chemical scaffolds in a stochastic persister model, and a streptomycin-dependent model. We found that compounds display varying levels of activity in different models for the nonreplicating state, suggesting important differences in bacterial physiology between models. Therefore, chemical tools identified in this assay may be useful for determining the relevance of different nonreplicating in vitro models to in vivo M. tuberculosis infection. Given our current limited understanding, molecules that are active across multiple models may represent more promising candidates for further development.


Subject(s)
Antitubercular Agents/pharmacology , Carbon/metabolism , Models, Biological , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/chemistry , Cell Cycle/drug effects , Food , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/cytology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
6.
ACS Chem Biol ; 7(8): 1377-84, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22577943

ABSTRACT

Despite the urgent need for new antitubercular drugs, few are on the horizon. To combat the problem of emerging drug resistance, structurally unique chemical entities that inhibit new targets will be required. Here we describe our investigations using whole cell screening of a diverse collection of small molecules as a methodology for identifying novel inhibitors that target new pathways for Mycobacterium tuberculosis drug discovery. We find that conducting primary screens using model mycobacterial species may limit the potential for identifying new inhibitors with efficacy against M. tuberculosis. In addition, we confirm the importance of developing in vitro assay conditions that are reflective of in vivo biology for maximizing the proportion of hits from whole cell screening that are likely to have activity in vivo. Finally, we describe the identification and characterization of two novel inhibitors that target steps in M. tuberculosis cell wall biosynthesis. The first is a novel benzimidazole that targets mycobacterial membrane protein large 3 (MmpL3), a proposed transporter for cell wall mycolic acids. The second is a nitro-triazole that inhibits decaprenylphosphoryl-ß-D-ribose 2'-epimerase (DprE1), an epimerase required for cell wall biosynthesis. These proteins are both among the small number of new targets that have been identified by forward chemical genetics using resistance generation coupled with genome sequencing. This suggests that methodologies currently employed for screening and target identification may lead to a bias in target discovery and that alternative methods should be explored.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/chemistry , Biochemistry/methods , Cell Wall/metabolism , Chemistry, Pharmaceutical/methods , Dose-Response Relationship, Drug , Drug Design , Drug Discovery , Drug Evaluation, Preclinical/methods , Glycerol/chemistry , Green Fluorescent Proteins/metabolism , Microbial Sensitivity Tests , Models, Chemical , Mutation , Mycobacterium tuberculosis/genetics
7.
J Bacteriol ; 193(12): 2989-99, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21515773

ABSTRACT

Two-component sensors are widely used by bacteria to sense and respond to the environment. Pseudomonas aeruginosa has one of the largest sets of two-component sensors known in bacteria, which likely contributes to its unique ability to adapt to multiple environments, including the human host. Several of these two-component sensors, such as GacS and RetS, have been shown to play roles in virulence in rodent infection models. However, the role and function of the majority of these two-component sensors remain unknown. Danio rerio is a recently characterized model host for pathogenesis-related studies that is amenable to higher-throughput analysis than mammalian models. Using zebrafish embryos as a model host, we have systematically tested the role of 60 two-component sensors and identified 6 sensors that are required for P. aeruginosa virulence. We found that KinB is required for acute infection in zebrafish embryos and regulates a number of virulence-associated phenotypes, including quorum sensing, biofilm formation, and motility. Its regulation of these phenotypes is independent of its kinase activity and its known response regulator AlgB, suggesting that it does not fit the canonical two-component sensor-response regulator model.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/physiology , Phosphotransferases/metabolism , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/pathogenicity , Animals , Bacterial Proteins/genetics , Embryo, Nonmammalian/microbiology , Phosphotransferases/genetics , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Virulence , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...