Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 29(12): 3999-4007, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23448185

ABSTRACT

Multiarm star copolymers with approximately 460 poly(ethylene oxide) (PEO) arms that have a degree of polymerization N = 45 were synthesized via atom transfer radical polymerization (ATRP) of PEO-methacrylate macromonomers in the presence of divinyl benzene cross-linkers. These are an example of molecular or nanoparticulate brushes that are of interest as steric stabilizers or boundary lubrication agents when adsorbed from solution to a solid/aqueous interface. We use ellipsometry to measure adsorption isotherms at the silica/aqueous interface for PEO star polymers and linear PEO chains having molecular weights comparable either to the star polymer or to the individual arms. The compactness of the PEO star polymers (molecular weight 1.2 × 10(6)) yields a saturation surface excess concentration that is approximately 3.5 times greater than that of the high molecular weight (1 × 10(6)) linear PEO. Adsorption of low molecular weight (6000) linear PEO was below the detection limit. Competitive adsorption experiments were conducted with ellipsometry, complemented by independent quartz crystal microbalance with dissipation (QCM-D) measurements. Linear PEO (high molecular weight) displaced preadsorbed PEO star polymers over the course of approximately 1.5 h, to form a mixed adsorbed layer having not only a significantly lower overall polymer surface excess concentration, but also a significantly greater amount of hydrodynamically entrapped water. Challenging a preadsorbed linear PEO (high molecular weight) layer with PEO star polymers produced no measurable change in the overall polymer surface excess concentration, but changes in the QCM-D energy dissipation and resonance frequency suggested that the introduction of PEO star polymers caused a slight swelling of the layer with a correspondingly small increase in entrapped water content.


Subject(s)
Polyethylene Glycols/chemistry , Silicon Dioxide/chemistry , Water/chemistry , Adsorption , Cross-Linking Reagents/chemistry , Methacrylates/chemistry , Molecular Conformation , Molecular Weight , Polymerization , Thermodynamics , Vinyl Compounds/chemistry , Wettability
2.
J Colloid Interface Sci ; 394: 284-92, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23266031

ABSTRACT

Poly(ethylene oxide) star polymers (PEO stars) were prepared by atom transfer radical polymerization of 2000 molecular weight PEO methacrylate macromonomer with divinylbenzene as a crosslinking co-monomer. With an average of 460 arms per star, these PEO stars had a 12 nm radius of gyration that is consistent with a dense polymer core surrounded by an extended PEO corona. The PEO stars were extremely efficient emulsifiers, stabilizing cyclohexane-in-water or xylene-in-water emulsions against coalescence for several months at aqueous phase concentrations as low as 0.008 wt% or 0.01 wt%, respectively. Consistent with their emulsifying performance, PEO star adsorption decreased interfacial tension by approximately 22 mN/m and imparted significant dilatational elasticity to the xylene/water interface. PEO stars were thermally responsive, displaying a cloud point upon heating in water that was tuned by addition of kosmotropic electrolytes, and they in turn produced xylene-in-water emulsions that were thermally responsive in terms of the dispersion state of the emulsion droplets and the emulsion rheology. Emulsions prepared at room temperature mainly had non-flocculated droplets. Heating such an emulsion above the cloud point temperature triggered droplet flocculation, but not coalescence, that in turn was associated with increased viscous and elastic moduli of the emulsion measured after cooling back to room temperature. Emulsions that initially were homogenized above the cloud point temperature and then cooled showed neither droplet flocculation nor rheological thickening relative to emulsions that were prepared and held at room temperature. A mechanism based on the bridging behavior of PEO stars adsorbed at the droplet/water interface is postulated to explain this thermal response of the emulsion microstructure.


Subject(s)
Emulsifying Agents/chemistry , Emulsions/chemistry , Polyethylene Glycols/chemistry , Adsorption , Elasticity , Flocculation , Rheology , Surface Tension , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...