Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pediatr ; 9: 660476, 2021.
Article in English | MEDLINE | ID: mdl-34414140

ABSTRACT

The overarching goal of the present work is to contribute to the understanding of the relations between fetal heart rate (FHR) temporal dynamics and the well-being of the fetus, notably in terms of predicting the evolution of lactate, pH and cardiovascular decompensation (CVD). It makes uses of an established animal model of human labor, where 14 near-term ovine fetuses subjected to umbilical cord occlusions (UCO) were instrumented to permit regular intermittent measurements of metabolites lactate and base excess, pH, and continuous recording of electrocardiogram (ECG) and systemic arterial blood pressure (to identify CVD) during UCO. ECG-derived FHR was digitized at the sampling rate of 1,000 Hz and resampled to 4 Hz, as used in clinical routine. We focused on four FHR variability features which are tunable to temporal scales of FHR dynamics, robustly computable from FHR sampled at 4 Hz and within short-time sliding windows, hence permitting a time-dependent, or local, analysis of FHR which helps dealing with signal noise. Results show the sensitivity of the proposed features for early detection of CVD, correlation to metabolites and pH, useful for early acidosis detection and the importance of coarse time scales (2.5-8 s) which are not disturbed by the low FHR sampling rate. Further, we introduce the performance of an individualized self-referencing metric of the distance to healthy state, based on a combination of the four features. We demonstrate that this novel metric, applied to clinically available FHR temporal dynamics alone, accurately predicts the time occurrence of CVD which heralds a clinically significant degradation of the fetal health reserve to tolerate the trial of labor.

2.
Front Pediatr ; 9: 593889, 2021.
Article in English | MEDLINE | ID: mdl-34026680

ABSTRACT

Background: When exposed to repetitive umbilical cord occlusions (UCO) with worsening acidemia, fetuses eventually develop cardiovascular decompensation manifesting as pathological hypotensive arterial blood pressure (ABP) responses to fetal heart rate (FHR) decelerations. Failure to maintain cardiac output during labor is a key event leading up to brain injury. We reported that the timing of the event when a fetus begins to exhibit this cardiovascular phenotype is highly individual and was impossible to predict. Objective: We hypothesized that this phenotype would be reflected in the individual behavior of heart rate variability (HRV) as measured by root mean square of successive differences of R-R intervals (RMSSD), a measure of vagal modulation of HRV, which is known to increase with worsening acidemia. This is clinically relevant because HRV can be computed in real-time intrapartum. Consequently, we aimed to predict the individual timing of the event when a hypotensive ABP pattern would emerge in a fetus from a series of continuous RMSSD data. Study Design: Fourteen near-term fetal sheep were chronically instrumented with vascular catheters to record fetal arterial blood pressure, umbilical cord occluder to mimic uterine contractions occurring during human labor and ECG electrodes to compute the ECG-derived HRV measure RMSSD. All animals were studied over a ~6 h period. After a 1-2 h baseline control period, the animals underwent mild, moderate, and severe series of repetitive UCO. We applied the recently developed machine learning algorithm to detect physiologically meaningful changes in RMSSD dynamics with worsening acidemia and hypotensive responses to FHR decelerations. To mimic clinical scenarios using an ultrasound-based 4 Hz FHR sampling rate, we recomputed RMSSD from FHR sampled at 4 Hz and compared the performance of our algorithm under both conditions (1,000 Hz vs. 4 Hz). Results: The RMSSD values were highly non-stationary, with four different regimes and three regime changes, corresponding to a baseline period followed by mild, moderate, and severe UCO series. Each time series was characterized by seemingly randomly occurring (in terms of timing of the individual onset) increase in RMSSD values at different time points during the moderate UCO series and at the start of the severe UCO series. This event manifested as an increasing trend in RMSSD values, which counter-intuitively emerged as a period of relative stationarity for the time series. Our algorithm identified these change points as the individual time points of cardiovascular decompensation with 92% sensitivity, 86% accuracy and 92% precision which corresponded to 14 ± 21 min before the visual identification. In the 4 Hz RMSSD time series, the algorithm detected the event with 3 times earlier detection times than at 1,000 Hz, i.e., producing false positive alarms with 50% sensitivity, 21% accuracy, and 27% precision. We identified the overestimation of baseline FHR variability by RMSSD at a 4 Hz sampling rate to be the cause of this phenomenon. Conclusions: The key finding is demonstration of FHR monitoring to detect fetal cardiovascular decompensation during labor. This validates the hypothesis that our HRV-based algorithm identifies individual time points of ABP responses to UCO with worsening acidemia by extracting change point information from the physiologically related fluctuations in the RMSSD signal. This performance depends on the acquisition accuracy of beat to beat fluctuations achieved in trans-abdominal ECG devices and fails at the sampling rate used clinically in ultrasound-based systems. This has implications for implementing such an approach in clinical practice.

3.
Front Psychol ; 10: 322, 2019.
Article in English | MEDLINE | ID: mdl-30858811

ABSTRACT

The present study examined the effectiveness of a Modified-Comparison Questions Technique, used in conjunction with the polygraph, to differentiate between common travelers, drug traffickers, and terrorists at transportation hubs. Two experiments were conducted using a mock crime paradigm. In Experiment 1, we randomly assigned 78 participants to either a drug condition, where they packed and lied about illicit drugs in their luggage, or a control condition, where they did not pack or lie about any illegal items. In Experiment 2, we randomly assigned 164 participants to one of the two conditions in Experiment 1 or an additional bomb condition, where they packed and lied about a bomb in their luggage. For both experiments, we assessed participants' RR interval, heart rate, peak-to-peak amplitude of Galvanic Skin Response (GSR) and all three combined, using Discriminant Analyses to determine the classification accuracy of participants in each condition. In both experiments, we found decelerated heart rates and increased peak-to-peak amplitude of GSR in guilty participants when lying in response to questions regarding their crime. We also found accurate classifications of participants, in both Experiment 1 (drug vs. control: 84.2% vs. 82.5%) and Experiment 2 (drug vs. control: 82:1% vs. 95.1%; bomb vs. control: 93.2% vs. 95.1%; drug vs. bomb: 92.3% vs. 90.9%), above chance level. These findings indicate that Modified-CQT, combined with a polygraph test, is a viable method for investigating suspects of drug trafficking and terrorism at transportation hubs such as train stations and airports.

4.
R Soc Open Sci ; 5(10): 180780, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30473829

ABSTRACT

Cerebral aneurysms affect a significant portion of the adult population worldwide. Despite significant progress, the development of robust techniques to evaluate the risk of aneurysm rupture remains a critical challenge. We hypothesize that vertebral artery fusiform aneurysm (VAFA) morphology may be predictive of rupture risk and can serve as a deciding factor in clinical management. To investigate the VAFA morphology, we use a combination of image analysis and machine learning techniques to study a geometric feature set computed from a depository of 37 (12 ruptured and 25 un-ruptured) aneurysm images. Of the 571 unique features we compute, we distinguish five features for use by our machine learning classification algorithm by an analysis of statistical significance. These machine learning methods achieve state-of-the-art classification performance (81.43 ± 13.08%) for the VAFA morphology, and identify five features (cross-sectional area change of aneurysm, maximum diameter of nearby distal vessel, solidity of aneurysm, maximum curvature of nearby distal vessel, and ratio of curvature between aneurysm and its nearby proximal vessel) as effective predictors of VAFA rupture risk. These results suggest that the geometric features of VAFA morphology may serve as useful non-invasive indicators for the prediction of aneurysm rupture risk in surgical settings.

5.
Math Ind Case Stud ; 8(1): 7, 2017.
Article in English | MEDLINE | ID: mdl-32010414

ABSTRACT

This paper studies liquidity and volatility commonality in the Canadian stock market. We show that five various liquidity measures display strong evidence of commonality at both market-wide and industry specific levels. Our findings extend the results of previous studies in liquidity commonality, and show that even after controlling for individual determinants of liquidity such as price, volume, and volatility, liquidity commonality remains. In addition to demonstrating liquidity commonality, we also investigated the causal relationship between liquidity and volatility. Our evidence indicates that depth, proportional effective spread, and liquidity changes predict volatility changes for bid-ask spread, depth, and proportional effective spread.

6.
Front Physiol ; 8: 1112, 2017.
Article in English | MEDLINE | ID: mdl-29379444

ABSTRACT

Experimentally and clinically collected time series data are often contaminated with significant confounding noise, creating short, noisy time series. This noise, due to natural variability and measurement error, poses a challenge to conventional change point detection methods. We propose a novel and robust statistical method for change point detection for noisy biological time sequences. Our method is a significant improvement over traditional change point detection methods, which only examine a potential anomaly at a single time point. In contrast, our method considers all suspected anomaly points and considers the joint probability distribution of the number of change points and the elapsed time between two consecutive anomalies. We validate our method with three simulated time series, a widely accepted benchmark data set, two geological time series, a data set of ECG recordings, and a physiological data set of heart rate variability measurements of fetal sheep model of human labor, comparing it to three existing methods. Our method demonstrates significantly improved performance over the existing point-wise detection methods.

7.
Bull Math Biol ; 77(12): 2264-93, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26582358

ABSTRACT

Fetal acidemia during labor is associated with an increased risk of brain injury and lasting neurological deficits. This is in part due to the repetitive occlusions of the umbilical cord (UCO) induced by uterine contractions. Whereas fetal heart rate (FHR) monitoring is widely used clinically, it fails to detect fetal acidemia. Hence, new approaches are needed for early detection of fetal acidemia during labor. We built a mathematical model of the UCO effects on FHR, mean arterial blood pressure (MABP), oxygenation and metabolism. Mimicking fetal experiments, our in silico model reproduces salient features of experimentally observed fetal cardiovascular and metabolic behavior including FHR overshoot, gradual MABP decrease and mixed metabolic and respiratory acidemia during UCO. Combined with statistical analysis, our model provides valuable insight into the labor-like fetal distress and guidance for refining FHR monitoring algorithms to improve detection of fetal acidemia and cardiovascular decompensation.


Subject(s)
Fetus/blood supply , Fetus/physiopathology , Sheep/physiology , Acidosis/physiopathology , Animals , Blood Pressure , Constriction, Pathologic , Female , Fetus/metabolism , Heart Rate, Fetal , Mathematical Concepts , Models, Animal , Models, Cardiovascular , Pregnancy , Umbilical Cord/pathology , Umbilical Cord/physiopathology , Uterine Contraction/physiology
8.
Physiol Rep ; 3(7)2015 Jul.
Article in English | MEDLINE | ID: mdl-26149280

ABSTRACT

In fetal sheep, the electrocorticogram (ECOG) recorded directly from the cortex during repetitive heart rate (FHR) decelerations induced by umbilical cord occlusions (UCO) predictably correlates with worsening hypoxic-acidemia. In human fetal monitoring during labor, the equivalent electroencephalogram (EEG) can be recorded noninvasively from the scalp. We tested the hypothesis that combined fetal EEG - FHR monitoring allows for early detection of worsening hypoxic-acidemia similar to that shown for ECOG-FHR monitoring. Near-term fetal sheep (n = 9) were chronically instrumented with arterial and venous catheters, ECG, ECOG, and EEG electrodes and umbilical cord occluder, followed by 4 days of recovery. Repetitive UCOs of 1 min duration and increasing strength (with regard to the degree of reduction in umbilical blood flow) were induced each 2.5 min until pH dropped to <7.00. Repetitive UCOs led to marked acidosis (arterial pH 7.35 ± 0.01 to 7.00 ± 0.03). At pH of 7.22 ± 0.03 (range 7.32-7.07), and 45 ± 9 min (range 1 h 33 min-20 min) prior to attaining pH < 7.00, both ECOG and EEG amplitudes began to decrease ~fourfold during each FHR deceleration in a synchronized manner. Confirming our hypothesis, these findings support fetal EEG as a useful adjunct to FHR monitoring during human labor for early detection of incipient fetal acidemia.

SELECTION OF CITATIONS
SEARCH DETAIL
...