Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Case Rep ; 7(12): 2476-2482, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31893083

ABSTRACT

Using whole exome sequencing, we found a pathogenic variant in the EEF1A2 gene in a patient with a Rett syndrome-like (RTT-like) phenotype, further confirming the association between EEF1A2 and Rett syndrome RTT and RTT-like phenotypes.

2.
Mol Genet Metab ; 123(3): 382-387, 2018 03.
Article in English | MEDLINE | ID: mdl-29398271

ABSTRACT

In this study, we report a paediatric patient with a lethal phenotype of respiratory distress, failure to thrive, pancreatic insufficiency, liver dysfunction, hypertrophic cardiomyopathy, bone marrow suppression, humoral and cellular immune deficiency. To identify the genetic basis of this unusual clinical phenotype and potentially make available the option of future prenatal testing, whole exome sequencing (WES) was used followed by functional studies in a bid to confirm pathogenicity. The WES we identified a homozygous novel variant, AK298328; c.9_10insGAG; p.[Glu3dup], in NOX4 in the proband, and parental heterozygosity for the variant (confirmed by Sanger sequencing). NADPH Oxidase 4 NOX4 (OMIM 605261) encodes an enzyme that functions as the catalytic subunit of the NADPH oxidase complex. NOX4 acts as an oxygen sensor, catalysing the reduction of molecular oxygen, mainly to hydrogen peroxide (H2O2). However, although, our functional data including 60% reduction in NOX4 protein levels and a 75% reduction in the production of H2O2 in patient fibroblast extracts compared to controls was initially considered to be the likely cause of the phenotype in our patient, the potential contribution of the NOX4 variant as the primary cause of the disease was clearly excluded based on following pieces of evidence. First, Sanger sequencing of other family members revealed that two of the grandparents were also homozygous for the NOX4 variant, one of who has fibromuscular dysplasia. Second, re-evaluation of more recent variant databases revealed a high allele frequency for this variant. Our case highlights the need to re-interrogate bioinformatics resources as they are constantly evolving, and is reminiscent of the short-chain acyl-CoA dehydrogenase deficiency (SCADD) story, where a functional defect in fatty acid oxidation has doubtful clinical ramifications.


Subject(s)
Homozygote , NADPH Oxidase 4/genetics , Phenotype , Agenesis of Corpus Callosum/diagnosis , Agenesis of Corpus Callosum/genetics , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Cataract/diagnosis , Cataract/genetics , Computational Biology , Exocrine Pancreatic Insufficiency/diagnosis , Exocrine Pancreatic Insufficiency/genetics , Failure to Thrive/diagnosis , Failure to Thrive/genetics , Fatal Outcome , Female , Heterozygote , Humans , Infant , Infant, Newborn , Infant, Premature , Respiratory Distress Syndrome, Newborn/diagnosis , Respiratory Distress Syndrome, Newborn/genetics , Exome Sequencing
3.
Front Cell Neurosci ; 9: 266, 2015.
Article in English | MEDLINE | ID: mdl-26236194

ABSTRACT

Rett syndrome (RTT) is a rare, severe disorder of neuronal plasticity that predominantly affects girls. Girls with RTT usually appear asymptomatic in the first 6-18 months of life, but gradually develop severe motor, cognitive, and behavioral abnormalities that persist for life. A predominance of neuronal and synaptic dysfunction, with altered excitatory-inhibitory neuronal synaptic transmission and synaptic plasticity, are overarching features of RTT in children and in mouse models. Over 90% of patients with classical RTT have mutations in the X-linked methyl-CpG-binding (MECP2) gene, while other genes, including cyclin-dependent kinase-like 5 (CDKL5), Forkhead box protein G1 (FOXG1), myocyte-specific enhancer factor 2C (MEF2C), and transcription factor 4 (TCF4), have been associated with phenotypes overlapping with RTT. However, there remain a proportion of patients who carry a clinical diagnosis of RTT, but who are mutation negative. In recent years, next-generation sequencing technologies have revolutionized approaches to genetic studies, making whole-exome and even whole-genome sequencing possible strategies for the detection of rare and de novo mutations, aiding the discovery of novel disease genes. Here, we review the recent progress that is emerging in identifying pathogenic variations, specifically from exome sequencing in RTT patients, and emphasize the need for the use of this technology to identify known and new disease genes in RTT patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...