Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37848203

ABSTRACT

Microbial challenge in-use studies are performed to evaluate the potential for microbial proliferation in preservative-free single dose biological products after first puncture and potential accidental contamination during dose preparation (e.g. reconstitution, dilution) and storage. These studies, in addition to physicochemical in-use stability assessments, are used as part of product registration to define in-use hold times in Prescribing Information and in the pharmacy manual in the case of clinical products. There are no formal guidance documents describing regulator expectations on how to conduct microbial challenge in-use studies and interpret microbial data to assign in-use storage hold-times. In lieu of guidance, US Food and Drug Administration (FDA) regulators have authored publications and presentations describing regulator expectations. Insufficient or unavailable microbial challenge data can result in shortened in-use hold times, thus microbial challenge data enables flexibility for health care providers (HCPs) and patients, while ensuring patient safety. A cross-industry/FDA in-use microbial working group was formed through the Innovation & Quality (IQ) Consortium to gain alignment among industry practice and regulator expectations. The working group assessed regulatory guidance, current industry practice via a blinded survey of IQ Consortium member companies, and scientific rationale to align on recommendations for experimental design, execution of microbial challenge in-use studies, and a decision tree for microbial data interpretation to assign in-use hold times. Besides the study execution and data interpretation, additional considerations are discussed including use of platform data for clinical stage products, closed system transfer devices (CSTDs), transport of dose solutions, long infusion times, and the use of USP <797> by HCPs for preparing sterile drugs for administration. The recommendations provided in this manuscript will help streamline biological product development, ensure consistency on assignment of in-use hold times in biological product labels across industry, and provide maximum allowable flexibility to HCPs and patients, while ensuring patient safety.

2.
J Pharm Sci ; 110(2): 610-614, 2021 02.
Article in English | MEDLINE | ID: mdl-33127425

ABSTRACT

The Formulation Workstream of the BioPhorum Development Group (BPDG), an industry-wide consortium, has identified the increased use of closed system drug-transfer devices (CSTDs) with biologics, without an associated compatibility assessment, to be of significant concern. The use of CSTDs has increased significantly in recent years due to the recommendations by NIOSH and USP that they be used during preparation and administration of hazardous drugs. While CSTDs are valuable in the healthcare setting to reduce occupational exposure to hazardous compounds, these devices may present particular risks that must be adequately assessed prior to use to ensure their compatibility with specific types of drug products, such as biologic drugs, which may be sensitive. The responsibility of ensuring quality of biologic products through preparation and administration to the patient lies with the drug product sponsor. Due to the significant number of marketed CSTD systems, and the large variety of components offered for each system, a strategic, risk-based approach to assessing compatibility is recommended herein. In addition to traditional material compatibility, assessment of CSTD compatibility with biologics should consider additional parameters to address specific CSTD-related risks. The BPDG Formulation Workstream has proposed a systematic risk-based evaluation approach as well as a mitigation strategy for establishing suitability of CSTDs for use.


Subject(s)
Antineoplastic Agents , Biological Products , Pharmaceutical Preparations , Drug Compounding , Humans , Protective Devices
3.
J Pharm Sci ; 109(1): 807-817, 2020 01.
Article in English | MEDLINE | ID: mdl-31622600

ABSTRACT

Sucrose is a common cryoprotectant and lyoprotectant to stabilize labile biopharmaceuticals during freeze-drying and storage. Sucrose-based formulations require low primary drying temperatures to avoid collapse and monoclonal antibody (mAb) containing products need to be stored refrigerated. The objective of this study is to investigate different excipients enabling storage at room temperature and aggressive, shorter lyophilization cycles. We studied combinations of 2-hydroxypropyl-beta-cyclodextrin (CD), recombinant human albumin, polyvinylpyrroldione (PVP), dextran 40 kDa (Dex), and sucrose (Suc) using 2 mAbs. Samples were characterized for collapse temperature (Tc), glass transition temperature of the liquid (Tg') and freeze-dried formulation (Tg), cake appearance, residual moisture, and reconstitution time. Freeze-dried formulations were stored at 5°C, 25°C, and 40°C for up to 9 months and mAb stability was analyzed for color, turbidity, visible and sub-visible particles, and monomer content. Formulations with CD/Suc or CD/PVP/Suc were superior to pure Suc formulations for long-term storage at 40°C. When using aggressive freeze-drying cycles, these formulations were characterized by pharmaceutically elegant cakes, short reconstitution times, higher Tg', Tc, and Tg. We conclude that the addition of CD allows for shorter freeze-drying cycles with improved cake appearance and enables storage at room temperature, which might reduce costs of goods substantially.


Subject(s)
Antibodies, Monoclonal , Drug Storage , Immunoglobulin G , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Antibodies, Monoclonal/chemistry , Dextrans/chemistry , Drug Compounding , Drug Stability , Excipients/chemistry , Freeze Drying , Immunoglobulin G/chemistry , Povidone/chemistry , Protein Aggregates , Protein Stability , Serum Albumin, Human/chemistry , Sucrose/chemistry , Time Factors , Transition Temperature , Vitrification
4.
Eur J Pharm Biopharm ; 147: 45-56, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31866444

ABSTRACT

Freeze-drying is commonly used to improve stability of liquid formulations of labile biopharmaceuticals. Lyo- and cryoprotectants such as sucrose are traditionally utilized as excipients, but have low glass transition (Tg') and collapse temperatures (Tc). Consequently, these formulations require low primary drying temperatures making the lyophilization cycle time-consuming and costly. We investigated different dextrans (1, 40, 150, and 500 kDa) and mixtures of dextran with sucrose as alternative excipients. The influence of dextran on thermal properties, cake appearance, and other quality attributes in the solid state was studied using bovine serum albumin as model protein. Especially at higher weight ratios of dextran to sucrose, dextrans of medium to high molecular weight (MW) of 40-500 kDa showed up to 20 °C higher Tc compared to sucrose, which was reflected in elegant lyophilisates. However, this resulted in slower reconstitution times. Addition of dextran led to lower residual moisture levels and higher Tg values compared to sucrose. We confirmed the thermal properties for two monoclonal antibodies (mAb) at two weight ratios of sucrose and dextran with different MW, and tested for stability at 40 °C for 14 days. While no loss in relative potency of the antibodies was observed after storage, size exclusion chromatography and isoelectric focusing revealed a strong increase in high molecular weight species (HMWs) and acidic species, which were dependent on the MW of the dextrans. With further characterization of selected formulations (dextran 1 kDa) by boronate affinity chromatography and mass spectrometry analysis, we demonstrated that HMWs were a result of glycation by free terminal glucose of the dextran. This chemical modification was strongly reduced when adding sucrose, which protects the protein possibly by shielding its surface. Our results demonstrate that formulation scientists need to use dextrans as excipients in freeze-dried mAb formulations with caution. A binary mixture of sucrose and dextran in adequate ratio however might potentially be superior to pure sucrose formulations allowing for faster freeze-drying cycles resulting in elegant lyophilisates and good protein stability.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Dextrans/chemistry , Excipients/chemistry , Serum Albumin, Bovine/administration & dosage , Antibodies, Monoclonal/chemistry , Chemistry, Pharmaceutical/methods , Chromatography, Affinity , Chromatography, Gel , Freeze Drying , Mass Spectrometry , Molecular Weight , Protein Stability , Serum Albumin, Bovine/chemistry , Sucrose/chemistry , Temperature
5.
Pharmaceutics ; 11(11)2019 Nov 17.
Article in English | MEDLINE | ID: mdl-31744221

ABSTRACT

Short freeze-drying cycles for biopharmaceuticals are desirable. Formulations containing an amorphous disaccharide, such as sucrose, are prone to collapse upon aggressive primary drying at higher shelf temperature. We used 2-hydroxypropyl-betacyclodextrin (HPBCD) in combination with sucrose and polyvinylpyrrolidone (PVP) to develop an aggressive lyophilization cycle for low concentration monoclonal antibody (mAb) formulations. Glass transition temperature and collapse temperature of the formulations were determined, and increasingly aggressive cycle parameters were applied. Using a shelf temperature of +30 °C during primary drying, the concept of combining sublimation and desorption of water in a single drying step was investigated. Cake appearance was evaluated visually and by micro-computed tomography. Lyophilisates were further analyzed for reconstitution time, specific surface area, residual moisture, and glass transition temperature. We demonstrated the applicability of single-step freeze-drying, shortening the total cycle time by 50% and providing elegant lyophilisates for pure HPBCD and HPBCD/sucrose formulations. HPBCD/PVP/sucrose showed minor dents, while good mAb stability at 10 mg/mL was obtained for HPBCD/sucrose and HPBCD/PVP/sucrose when stored at 40 °C for 3 months. We conclude that HPBCD-based formulations in combination with sucrose are highly attractive, enabling aggressive, single-step freeze-drying of low concentration mAb formulations, while maintaining elegant lyophilisates and ensuring protein stability at the same time.

6.
J Pharm Sci ; 107(11): 2810-2822, 2018 11.
Article in English | MEDLINE | ID: mdl-30005985

ABSTRACT

Pharmaceutically elegant lyophilisates are highly desirable implying a stable and robust freeze-drying process. To ensure homogenous and intact cake appearance after process scale-up and transfer, characterization of lyophilisates during formulation and cycle development is required. The present study investigates different imaging techniques to characterize lyophilisates on different levels. Cake appearance of freeze-dried bovine serum albumin formulations with different dextran/sucrose ratios was studied by visual inspection, three-dimensional laser scanning, polydimethylsiloxane embedding, scanning electron microscopy, and microcomputed tomography (µ-CT). The set of techniques allowed a holistic evaluation of external cake appearance and internal structure providing complementary information at macroscopic and microscopic scale. In comparison to state of the art technologies like visual inspection or scanning electron microscopy, three-dimensional laser scanning and µ-CT provided quantitative information allowing comparison of visual cake appearance. In particular µ-CT enables a global, qualitative, and quantitative characterization of external and internal cake structure with a single measurement detecting heterogeneities of lyophilisates. We even demonstrated the use of noninvasive µ-CT for qualitative imaging of internal cake structure through the glass vial. Providing meaningful characterization of the entire lyophilisate, µ-CT can serve as a powerful tool during development of freeze-drying cycles, process scale-up, and transfer.


Subject(s)
Excipients/chemistry , Freeze Drying , Serum Albumin, Bovine/chemistry , Animals , Cattle , Dextrans/chemistry , Drug Compounding , Freeze Drying/methods , Imaging, Three-Dimensional/methods , Lasers , Microscopy, Electron, Scanning/methods , Porosity , Sucrose/chemistry , X-Ray Microtomography/methods
7.
Mol Pharm ; 15(1): 1-11, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29182876

ABSTRACT

Solid state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS) has been used to assess protein conformation and matrix interactions in lyophilized solids. ssHDX-MS metrics have been previously correlated to the formation of aggregates of lyophilized myoglobin on storage. Here, ssHDX-MS was applied to lyophilized monoclonal antibody (mAb) formulations and correlated to their long-term stability. After exposing lyophilized samples to D2O(g), the amount of deuterium incorporated at various time points was determined by mass spectrometry for four different lyophilized mAb formulations. Hydrogen-deuterium exchange data were then correlated with mAb aggregation and chemical degradation, which was obtained in stability studies of >2.5 years. Deuterium uptake on ssHDX-MS of four lyophilized mAb formulations determined at the initial time point prior to storage in the dry state was directly and strongly correlated with the extent of aggregation and chemical degradation during storage. Other measures of physical and chemical properties of the solids were weakly or poorly correlated with stability. The data demonstrate, for the first time, that ssHDX-MS results are highly correlated with the stability of lyophilized mAb formulations. The findings thus suggest that ssHDX-MS can be used as an early read-out of differences in long-term stability between formulations helping to accelerate formulation screening and selection.


Subject(s)
Antibodies, Monoclonal/chemistry , Deuterium Exchange Measurement/methods , Freeze Drying/methods , Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Chromatography, Liquid , Drug Compounding , Microscopy, Electron, Scanning
8.
J Pharm Sci ; 105(10): 3123-3135, 2016 10.
Article in English | MEDLINE | ID: mdl-27506270

ABSTRACT

Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride.


Subject(s)
Arginine/chemistry , Drug Compounding/methods , Mannitol/chemistry , Chemistry, Pharmaceutical , Crystallization , Freeze Drying/methods , Ions , X-Ray Diffraction/methods
9.
Int J Pharm Compd ; 19(3): 261-7, 2015.
Article in English | MEDLINE | ID: mdl-26714367

ABSTRACT

MabThera is an essential component of the standard-of-care regimens in the treatment of non-Hodgkin lymphoma and Chronic Lymphatic Leukemia. MabThera for subcutaneous injection is a novel line extension that has been approved by the European Medicines Agency for the treatment of patients with follicular lymphoma and diffuse large B-cell lymphoma. This study aimed to evaluate in-use stability data of MabThera subcutaneous drug-product solution in single-use syringes for subcutaneous administration according to the European Medicines Agency guideline. The drug-product solution was exposed to material contact surfaces of five different administration setups commonly used in subcutaneous drug delivery. MabThera subcutaneous was transferred under aseptic conditions into polypropylene and polycarbonate syringes and stored for 1, 2, and 4 weeks at 2°C to 8°C followed by 24 hours at 30°C. After storage, subcutaneous administration was simulated and MabThera subcutaneous drug-product solution quality attributes were evaluated by using compendial physico-chemical tests, as well as suitable and validated molecule- and formulation-specific analytical methods. MabThera subcutaneous vials were treated and analyzed in parallel. The physico-chemical results of MabThera subcutaneous in the different setups were comparable to the control for all timepoints. No change in drug-product quality after storage and simulated administration was found compared to the control. However, since single-dose products do not contain preservatives, microbial contamination and growth needs to be avoided and product sterility needs to be ensured. The results showed that MabThera subcutaneous remains compatible and stable, from a physico-chemical perspective, for up to 4 weeks at 2°C to 8°C followed by 24 hours at 30°C with the contact materials tested in this study. In order to avoid and minimize microbial growth, MabThera subcutaneous should be used immediately after removal from the original packaging container and strict aseptic handling conditions need to be followed.


Subject(s)
Antineoplastic Agents/chemistry , Excipients/chemistry , Rituximab/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/standards , Asepsis , Chemistry, Pharmaceutical , Color , Drug Compounding , Drug Contamination/prevention & control , Drug Packaging , Drug Stability , Drug Storage , Guidelines as Topic , Hydrogen-Ion Concentration , Injections, Subcutaneous , Osmolar Concentration , Pharmaceutical Solutions , Quality Control , Rituximab/administration & dosage , Syringes , Technology, Pharmaceutical/methods , Temperature , Time Factors
10.
J Pharm Sci ; 104(12): 4241-4256, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26422647

ABSTRACT

We recently reported that the presence of chloride counter ions in freeze-dried l-arginine/sucrose formulations provided the greatest protein stability, but led to low collapse temperatures and glass transition temperatures of the freeze concentrates. The objectives of this study were to identify l-arginine chloride-based formulations and optimize freeze-drying process conditions to deliver a freeze-dried product with good physical quality attributes (including cake appearance, residual moisture, and reconstitution time). Additional properties were tested such as thermal properties, cake microstructure, and protein physical stability. Excipient concentrations were varied with and without a model protein (bovine serum albumin, BSA). Formulations were frozen with and without annealing or with and without controlled nucleation. Primary drying was conducted at high and low shelf temperature. Cakes with least defects and optimum physical attributes were achieved when protein to excipient ratios were high. Controlled nucleation led to elegant cakes for most systems at a low shelf temperature. Replacing BSA by a monoclonal antibody showed that protein (physical) stability was slightly improved under stress storage temperature (i.e., 40°C) in the presence of a low concentration of l-arginine in a sucrose-based formulation. At higher l-arginine concentrations, cake defects increased. Using optimized formulation design, addition of l-arginine chloride to a sucrose-based formulation provided elegant cakes and benefits for protein stability.


Subject(s)
Arginine/chemistry , Chlorides/chemistry , Proteins/chemistry , Sucrose/chemistry , Calorimetry, Differential Scanning/methods , Chemistry, Pharmaceutical/methods , Cold Temperature , Crystallization/methods , Drug Stability , Excipients/chemistry , Freeze Drying/methods , Protein Stability , Transition Temperature
11.
J Pharm Sci ; 104(7): 2345-58, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25994980

ABSTRACT

The objective of this study was to investigate product performance of freeze dried l-arginine/sucrose-based formulations under variation of excipient weight ratios, l-arginine counter ions and formulation pH as a matrix to stabilize a therapeutic monoclonal antibody (MAb) during freeze drying and shelf life. Protein and placebo formulations were lyophilized at aggressive primary drying conditions and key attributes of the freeze dried solids were correlated to their thermal properties and critical formulation temperature. Stability (physical) during processing and long-term storage of the MAb in different formulations was assessed by SE-HPLC. Thermal properties of the mixtures were greatly affected by the type of l-arginine counter ion. High glass transition temperatures were achieved by adding multivalent acids, whereas the temperature values significantly decreased in the presence of chloride ions. All mixtures were stable during freeze drying, but storage stability varied for the different preparations and counter ions. For l-arginine-based formulations, the protein was most stable in the presence of chloride ion, showing no obvious correlation to estimated global mobility of the glass. Besides drying behavior and thermal properties of the freeze dried solids, the counter ion of l-arginine must be considered relevant for protein shelf life stability.


Subject(s)
Arginine/chemistry , Proteins/chemistry , Sucrose/chemistry , Chemistry, Pharmaceutical/methods , Drug Stability , Freeze Drying/methods , Glass/chemistry , Ions/chemistry , Protein Stability , Transition Temperature
13.
J Pharm Sci ; 101(11): 4248-57, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22899501

ABSTRACT

The presence of oxidized methionine residues in therapeutic monoclonal antibodies can potentially impact drug efficacy, safety, as well as antibody half-life in vivo. Therefore, methionine oxidation of antibodies is a strong focus during pharmaceutical development and a well-known degradation pathway. The monitoring of methionine oxidation is currently routinely performed by peptide mapping/liquid chromatography-mass spectrometry techniques, which are laborious and time consuming. We have established analytical protein A chromatography as a method of choice for fast and quantitative screening of total Fc methionine oxidation during formulation and process development. The principle of this method relies on the lower binding affinity of protein A for immunoglobulin G-Fc domains containing oxidized methionines, compared with nonoxidized Fc domains. Our data reveal that highly conserved Fc methionines situated close to the binding site to protein A can serve as marker for the oxidation of other surface-exposed methionine residues. In case of poor separation of oxidized species by protein A chromatography, analytical protein G chromatography is proposed as alternative. We demonstrate that analytical protein A chromatography, and alternatively protein G chromatography, is a valuable tool for the screening of methionine oxidation in therapeutic antibodies during formulation and process development.


Subject(s)
Antibodies, Monoclonal/chemistry , Methionine/chemistry , Staphylococcal Protein A/chemistry , Chromatography, Liquid , Limit of Detection , Mass Spectrometry , Oxidation-Reduction , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...