Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 139(38): 13487-13491, 2017 09 27.
Article in English | MEDLINE | ID: mdl-28915058

ABSTRACT

A dual catalysis approach enables selective functionalization of unconventional feedstocks composed of complex fatty acid mixtures with highly unsaturated portions like eicosapentaenoate (20:5) along with monounsaturated compounds. The degree of unsaturation is unified by selective heterogeneous hydrogenation on Pd/γ-Al2O3, complemented by effective activation to a homogeneous carbonylation catalyst [(dtbpx)PdH(L)]+ by addition of diprotonated diphosphine (dtbpxH2)(OTf)2. By this one-pot approach, neat 20:5 as a model substrate is hydrogenated to up to 80% to the monounsaturated analogue (20:1), this is functionalized to the desired C21 α,ω-diester building block with a linear selectivity of over 90%. This catalytic approach is demonstrated to be suitable for crude microalgae oil from Phaeodactylum tricornutum genetically engineered for this purpose, as well as tall oil, an abundant waste material. Both substrates were fully converted with an overall selectivity to the linear α,ω-diester of up to 75%.

2.
J Am Chem Soc ; 136(48): 16871-81, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25415929

ABSTRACT

Theoretical studies on the overall catalytic cycle of isomerizing alkoxycarbonylation reveal the steric congestion around the diphosphine coordinated Pd-center as decisive for selectivity and productivity. The energy profile of isomerization is flat with diphosphines of variable steric bulk, but the preference for the formation of the linear Pd-alkyl species is more pronounced with sterically demanding diphosphines. CO insertion is feasible and reversible for all Pd-alkyl species studied and only little affected by the diphosphine. The overall rate-limiting step associated with the highest energetic barrier is methanolysis of the Pd-acyl species. Considering methanolysis of the linear Pd-acyl species, whose energetic barrier is lowest within all the Pd-acyl species studied, the barrier is calculated to be lower for more congesting diphosphines. Calculations indicate that energy differences of methanolysis of the linear versus branched Pd-acyls are more pronounced for more bulky diphosphines, due to involvement of different numbers of methanol molecules in the transition state. Experimental studies under pressure reactor conditions showed a faster conversion of shorter chain olefin substrates, but virtually no effect of the double bond position within the substrate. Compared to higher olefins, ethylene carbonylation under identical conditions is much faster, likely due not just to the occurrence of reactive linear acyls exclusively but also to an intrinsically favorable insertion reactivity of the olefin. The alcoholysis reaction is slowed down for higher alcohols, evidenced by pressure reactor and NMR studies. Multiple unsaturated fatty acids were observed to form a terminal Pd-allyl species upon reaction with the catalytically active Pd-hydride species. This process and further carbonylation are slow compared to isomerizing methoxycarbonylation of monounsaturated fatty acids, but selective.


Subject(s)
Organometallic Compounds/chemistry , Palladium/chemistry , Plant Oils/chemistry , Alkenes/chemistry , Carbon Monoxide/chemistry , Catalysis , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...