Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
2.
J Immunol ; 197(11): 4392-4402, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27807194

ABSTRACT

G-CSF is a hemopoietic growth factor that has a role in steady state granulopoiesis, as well as in mature neutrophil activation and function. G-CSF- and G-CSF receptor-deficient mice are profoundly protected in several models of rheumatoid arthritis, and Ab blockade of G-CSF also protects against disease. To further investigate the actions of blocking G-CSF/G-CSF receptor signaling in inflammatory disease, and as a prelude to human studies of the same approach, we developed a neutralizing mAb to the murine G-CSF receptor, which potently antagonizes binding of murine G-CSF and thereby inhibits STAT3 phosphorylation and G-CSF receptor signaling. Anti-G-CSF receptor rapidly halted the progression of established disease in collagen Ab-induced arthritis in mice. Neutrophil accumulation in joints was inhibited, without rendering animals neutropenic, suggesting an effect of G-CSF receptor blockade on neutrophil homing to inflammatory sites. Consistent with this, neutrophils in the blood and arthritic joints of anti-G-CSF receptor-treated mice showed alterations in cell adhesion receptors, with reduced CXCR2 and increased CD62L expression. Furthermore, blocking neutrophil trafficking with anti-G-CSF receptor suppressed local production of proinflammatory cytokines (IL-1ß, IL-6) and chemokines (KC, MCP-1) known to drive tissue damage. Differential gene expression analysis of joint neutrophils showed a switch away from an inflammatory phenotype following anti-G-CSF receptor therapy in collagen Ab-induced arthritis. Importantly, G-CSF receptor blockade did not adversely affect viral clearance during influenza infection in mice. To our knowledge, we describe for the first time the effect of G-CSF receptor blockade in a therapeutic model of inflammatory joint disease and provide support for pursuing this therapeutic approach in treating neutrophil-associated inflammatory diseases.


Subject(s)
Antibodies, Neutralizing/pharmacology , Arthritis, Experimental/drug therapy , Gene Expression Regulation/drug effects , Neutrophil Infiltration/drug effects , Neutrophils/immunology , Receptors, Granulocyte Colony-Stimulating Factor/antagonists & inhibitors , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Cytokines/genetics , Cytokines/immunology , Gene Expression Regulation/immunology , Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/immunology , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Joints/immunology , Joints/pathology , Male , Mice , Mice, Knockout , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Neutrophils/pathology , Receptors, Granulocyte Colony-Stimulating Factor/genetics , Receptors, Granulocyte Colony-Stimulating Factor/immunology
3.
Am J Pathol ; 186(1): 172-84, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26718978

ABSTRACT

Granulocyte colony-stimulating factor (G-CSF) is a regulator of neutrophil production, function, and survival. Herein, we investigated the role of G-CSF in a murine model of human uveitis-experimental autoimmune uveoretinitis. Experimental autoimmune uveoretinitis was dramatically reduced in G-CSF-deficient mice and in anti-G-CSF monoclonal antibody-treated, wild-type (WT) mice. Flow cytometric analysis of the ocular infiltrate in WT mice with experimental autoimmune uveoretinitis showed a mixed population, comprising neutrophils, macrophages, and T cells. The eyes of G-CSF-deficient and anti-G-CSF monoclonal antibody-treated WT mice had minimal neutrophil infiltrate, but no change in other myeloid-derived inflammatory cells. Antigen-specific T-cell responses were maintained, but the differentiation of pathogenic type 17 helper T cells in experimental autoimmune uveoretinitis was reduced with G-CSF deficiency. We show that G-CSF controls the ocular neutrophil infiltrate by modulating the expression of C-X-C chemokine receptors 2 and 4 on peripheral blood neutrophils, as well as actin polymerization and migration. These data reveal an integral role for G-CSF-driven neutrophil responses in ocular autoimmunity, operating within and outside of the bone marrow, and also identify G-CSF as a potential therapeutic target in the treatment of human uveoretinitis.


Subject(s)
Autoimmune Diseases/immunology , Granulocyte Colony-Stimulating Factor/immunology , Neutrophils/immunology , Uveitis/immunology , Animals , Autoimmune Diseases/pathology , Blotting, Western , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Mice , Mice, Inbred C57BL , Uveitis/pathology
4.
Stem Cell Reports ; 4(3): 445-58, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25733018

ABSTRACT

Mechanisms underlying age-related defects within lymphoid-lineages remain poorly understood. We previously reported that sex steroid ablation (SSA) induced lymphoid rejuvenation and enhanced recovery from hematopoietic stem cell (HSC) transplantation (HSCT). We herein show that, mechanistically, SSA induces hematopoietic and lymphoid recovery by functionally enhancing both HSC self-renewal and propensity for lymphoid differentiation through intrinsic molecular changes. Our transcriptome analysis revealed further hematopoietic support through rejuvenation of the bone marrow (BM) microenvironment, with upregulation of key hematopoietic factors and master regulatory factors associated with aging such as Foxo1. These studies provide important cellular and molecular insights into understanding how SSA-induced regeneration of the hematopoietic compartment can underpin recovery of the immune system following damaging cytoablative treatments. These findings support a short-term strategy for clinical use of SSA to enhance the production of lymphoid cells and HSC engraftment, leading to improved outcomes in adult patients undergoing HSCT and immune depletion in general.


Subject(s)
Cell Differentiation , Gonadal Steroid Hormones/antagonists & inhibitors , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Lymphopoiesis/physiology , Regeneration , Animals , Cell Count , Cell Differentiation/genetics , Cell Movement , Cell Self Renewal , Gene Expression Profiling , Gene Expression Regulation, Developmental , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Male , Mice , Mice, Knockout , Models, Animal , Regeneration/genetics , Stem Cell Niche
5.
J Neuroinflammation ; 12: 17, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25623142

ABSTRACT

BACKGROUND: Experimental autoimmune uveoretinitis (EAU) is a widely used experimental animal model of human endogenous posterior uveoretinitis. In the present study, we performed in vivo imaging of the retina in transgenic reporter mice to investigate dynamic changes in exogenous inflammatory cells and endogenous immune cells during the disease process. METHODS: Transgenic mice (C57Bl/6 J Cx 3 cr1 (GFP/+) , C57Bl/6 N CD11c-eYFP, and C57Bl/6 J LysM-eGFP) were used to visualize the dynamic changes of myeloid-derived cells, putative dendritic cells and neutrophils during EAU. Transgenic mice were monitored with multi-modal fundus imaging camera over five time points following disease induction with the retinal auto-antigen, interphotoreceptor retinoid binding protein (IRBP1-20). Disease severity was quantified with both clinical and histopathological grading. RESULTS: In the normal C57Bl/6 J Cx 3 cr1 (GFP/+) mouse Cx3cr1-expressing microglia were evenly distributed in the retina. In C57Bl/6 N CD11c-eYFP mice clusters of CD11c-expressing cells were noted in the retina and in C57Bl/6 J LysM-eGFP mice very low numbers of LysM-expressing neutrophils were observed in the fundus. Following immunization with IRBP1-20, fundus examination revealed accumulations of Cx3cr1-GFP(+) myeloid cells, CD11c-eYFP(+) cells and LysM-eGFP(+) myelomonocytic cells around the optic nerve head and along retinal vessels as early as day 14 post-immunization. CD11c-eYFP(+) cells appear to resolve marginally earlier (day 21 post-immunization) than Cx3cr1-GFP(+) and LysM-eGFP(+) cells. The clinical grading of EAU in transgenic mice correlated closely with histopathological grading. CONCLUSIONS: These results illustrate that in vivo fundus imaging of transgenic reporter mice allows direct visualization of various exogenously and endogenously derived leukocyte types during EAU progression. This approach acts as a valuable adjunct to other methods of studying the clinical course of EAU.


Subject(s)
Autoimmune Diseases , Disease Models, Animal , Multimodal Imaging , Retinitis/pathology , Uveitis/complications , Uveitis/genetics , Uveitis/pathology , Animals , CD11c Antigen/genetics , CX3C Chemokine Receptor 1 , Disease Progression , Eye Proteins/toxicity , Freund's Adjuvant/toxicity , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Macrophages , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muramidase/genetics , Peptide Fragments/toxicity , Receptors, Chemokine/genetics , Retinal Vessels , Retinitis/chemically induced , Retinitis/complications , Retinitis/genetics , Retinol-Binding Proteins/toxicity , Time Factors , Uveitis/chemically induced
6.
Methods Mol Biol ; 967: 161-5, 2013.
Article in English | MEDLINE | ID: mdl-23296728

ABSTRACT

Flow cytometry can be used to study STAT phosphorylation on a per cell basis. Cells are fixed, permeablized, and stained with antibodies that specifically bind to the phosphorylated form of the STAT protein. This allows the tyrosine phosphorylation of a single STAT to be studied within a heterogeneous cell population and/or the phosphorylation of several STATs within the one cell type.


Subject(s)
Flow Cytometry/methods , STAT3 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , Neutrophils/drug effects , Neutrophils/metabolism , Phosphorylation/drug effects , STAT3 Transcription Factor/chemistry , STAT5 Transcription Factor/chemistry , Tyrosine/metabolism
7.
PLoS One ; 7(4): e35222, 2012.
Article in English | MEDLINE | ID: mdl-22493742

ABSTRACT

BACKGROUND: In prostate cancer, genes encoding androgen-regulated, Y-chromosome-encoded, and tissue-specific antigens may all be overexpressed. In the adult male host, however, most high affinity T cells targeting these potential tumor rejection antigens will be removed during negative selection. In contrast, the female mature T-cell repertoire should contain abundant precursors capable of recognizing these classes of prostate cancer antigens and mediating effective anti-tumor immune responses. METHODOLOGY/PRINCIPAL FINDINGS: We find that syngeneic TRAMP-C2 prostatic adenocarcinoma cells are spontaneously rejected in female hosts. Adoptive transfer of naïve female lymphocytes to irradiated male hosts bearing pre-implanted TRAMP-C2 tumor cells slows tumor growth and mediates tumor rejection in some animals. The success of this adoptive transfer was dependent on the transfer of female CD4 T cells and independent of the presence of CD25-expressing regulatory T cells in the transferred lymphocytes. We identify in female CD4 T cells stimulated with TRAMP-C2 a dominant MHC II-restricted response to the Y-chromosome antigen DBY. Furthermore, CD8 T cell responses in female lymphocytes to the immunodominant MHC I-restricted antigen SPAS-1 are markedly increased compared to male mice. Finally, we find no exacerbation of graft-versus-host disease in either syngeneic or minor-antigen mismatched allogeneic lymphocyte adoptive transfer models by using female into male versus male into male cells. CONCLUSIONS/SIGNIFICANCE: This study shows that adoptively transferred female lymphocytes, particularly CD4 T cells, can control the outgrowth of pre-implanted prostatic adenocarcinoma cells. This approach does not significantly worsen graft-versus-host responses suggesting it may be viable in the clinic. Further, enhancing the available immune repertoire with female-derived T cells may provide an excellent pool of prostate cancer reactive T cells for further augmentation by combination with either vaccination or immune regulatory blockade strategies.


Subject(s)
Adenocarcinoma/therapy , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/transplantation , Immunotherapy, Adoptive/methods , Prostatic Neoplasms/therapy , Adenocarcinoma/immunology , Adult , Animals , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , DEAD-box RNA Helicases/immunology , Female , Graft vs Host Disease/prevention & control , Humans , Lymphocyte Count , Male , Mice , Minor Histocompatibility Antigens , Neoplasm Transplantation , Prostatic Neoplasms/immunology , Sex Factors , Whole-Body Irradiation
8.
Blood ; 118(2): 446-55, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21596854

ABSTRACT

IL-21 is a proinflammatory cytokine produced by Th17 cells. Abrogation of IL-21 signaling has recently been shown to reduce GVHD while retaining graft-versus-leukemia/lymphoma (GVL) responses. However, the mechanisms by which IL-21 may lead to a separation of GVHD and GVL remain incompletely understood. In a murine MHC-mismatched BM transplantation model, we observed that IL-21 receptor knockout (IL-21R KO) donor T cells mediate decreased systemic and gastrointestinal GVHD in recipients of a transplant. This reduction in GVHD was associated with expansion of transplanted donor regulatory T cells and with tissue-specific modulation of Th-cell function. IL-21R KO and wild-type donor T cells showed equivalent alloactivation, but IL-21R KO T cells showed decreased infiltration and inflammatory cytokine production within the mesenteric lymph nodes. However, Th-cell cytokine production was maintained peripherally, and IL-21R KO T cells mediated equivalent immunity against A20 and P815 hematopoietic tumors. In summary, abrogation of IL-21 signaling in donor T cells leads to tissue-specific modulation of immunity, such that gastrointestinal GVHD is reduced, but peripheral T-cell function and GVL capacity are retained. IL-21 is thus an exciting target for therapeutic intervention and improvement of clinical transplantation outcomes.


Subject(s)
Graft vs Host Disease/genetics , Graft vs Leukemia Effect/genetics , Immunity, Innate/genetics , Interleukins/physiology , T-Lymphocytes/metabolism , Tissue Donors , Animals , Gene Knockdown Techniques , Graft vs Host Disease/immunology , Graft vs Host Disease/metabolism , Humans , Immunity, Innate/physiology , Interleukin-21 Receptor alpha Subunit/genetics , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukin-21 Receptor alpha Subunit/physiology , Interleukins/genetics , Interleukins/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Organ Specificity/genetics , Organ Specificity/immunology , Signal Transduction/genetics , T-Lymphocytes/physiology , Transplantation Immunology
9.
J Immunol ; 184(11): 6014-24, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20483779

ABSTRACT

Cytotoxic antineoplastic therapy is used to treat malignant disease but results in long-term immunosuppression in postpubertal and adult individuals, leading to increased incidence and severity of opportunistic infections. We have previously shown that sex steroid ablation (SSA) reverses immunodeficiencies associated with age and hematopoietic stem cell transplantation in both autologous and allogeneic settings. In this study, we have assessed the effects of SSA by surgical castration on T cell recovery of young male mice following cyclophosphamide treatment as a model for the impact of chemotherapy. SSA increased thymic cellularity, involving all of the thymocyte subsets and early T lineage progenitors. It also induced early repair of damage to the thymic stromal microenvironment, which is crucial to the recovery of a fully functional T cell-based immune system. These functional changes in thymic stromal subsets included enhanced production of growth factors and chemokines important for thymopoiesis, which preceded increases in both thymocyte and stromal cellularity. These effects collectively translated to an increase in peripheral and splenic naive T cells. In conclusion, SSA enhances T cell recovery following cyclophosphamide treatment of mice, at the level of the thymocytes and their stromal niches. This provides a new approach to immune reconstitution following antineoplastic therapy.


Subject(s)
Antineoplastic Agents/toxicity , Cyclophosphamide/toxicity , Gonadal Steroid Hormones/immunology , Orchiectomy , T-Lymphocytes/immunology , Animals , Cell Separation , Flow Cytometry , Male , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Steroids , T-Lymphocytes/drug effects , Thymus Gland/cytology , Thymus Gland/drug effects , Thymus Gland/immunology
10.
J Clin Invest ; 120(1): 343-56, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19955659

ABSTRACT

Thymic graft-versus-host disease (tGVHD) can contribute to profound T cell deficiency and repertoire restriction after allogeneic BM transplantation (allo-BMT). However, the cellular mechanisms of tGVHD and interactions between donor alloreactive T cells and thymic tissues remain poorly defined. Using clinically relevant murine allo-BMT models, we show here that even minimal numbers of donor alloreactive T cells, which caused mild nonlethal systemic graft-versus-host disease, were sufficient to damage the thymus, delay T lineage reconstitution, and compromise donor peripheral T cell function. Furthermore, to mediate tGVHD, donor alloreactive T cells required trafficking molecules, including CCR9, L selectin, P selectin glycoprotein ligand-1, the integrin subunits alphaE and beta7, CCR2, and CXCR3, and costimulatory/inhibitory molecules, including Ox40 and carcinoembryonic antigen-associated cell adhesion molecule 1. We found that radiation in BMT conditioning regimens upregulated expression of the death receptors Fas and death receptor 5 (DR5) on thymic stromal cells (especially epithelium), while decreasing expression of the antiapoptotic regulator cellular caspase-8-like inhibitory protein. Donor alloreactive T cells used the cognate proteins FasL and TNF-related apoptosis-inducing ligand (TRAIL) (but not TNF or perforin) to mediate tGVHD, thereby damaging thymic stromal cells, cytoarchitecture, and function. Strategies that interfere with Fas/FasL and TRAIL/DR5 interactions may therefore represent a means to attenuate tGVHD and improve T cell reconstitution in allo-BMT recipients.


Subject(s)
Bone Marrow Transplantation/immunology , Fas Ligand Protein/physiology , Graft vs Host Disease/etiology , TNF-Related Apoptosis-Inducing Ligand/physiology , Thymus Gland/immunology , Animals , CASP8 and FADD-Like Apoptosis Regulating Protein/analysis , Cell Movement , Graft vs Host Disease/immunology , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, OX40/physiology , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Receptors, TNF-Related Apoptosis-Inducing Ligand/physiology , Stromal Cells/physiology , T-Lymphocytes/immunology , Thymus Gland/cytology , Transplantation, Homologous
11.
J Immunol ; 183(11): 7084-94, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19890044

ABSTRACT

Cytotoxic antineoplastic therapy is widely used in the clinic as a treatment for malignant diseases. The treatment itself, however, leads to long-term depletion of the adaptive immune system, which is more pronounced in older patients, predominantly due to thymic atrophy. We and others have previously shown that withdrawal of sex steroids is able to regenerate the aged thymus and enhance recovery from autologous and allogeneic hematopoietic stem cell transplant. In this study we have examined the effects of sex steroid ablation (SSA) on the recovery of lymphopoiesis in the bone marrow (BM) and thymus following treatment with the chemotherapeutic agent cyclophosphamide (Cy) in middle-aged and old mice. Furthermore, we have also examined the impact of this regeneration on peripheral immunity. SSA enhanced the recovery of BM resident hematopoietic stem cells and lymphoid progenitors and promoted lymphopoiesis. Interestingly, Cy alone caused a profound increase in the recently described common lymphoid progenitor 2 (CLP-2) population in the BM. In the thymus, SSA caused a profound increase in cellularity as well as all intrathymic T-lineage progenitors including early T-lineage progenitors (ETPs) and non-canonical T cell progenitors such as the CLP-2. We also found that these transferred into numerical increases in the periphery with enhanced B and T cell numbers. Furthermore, these lymphocytes were found to have an enhanced functional capacity with no perturbation of the TCR repertoire. Taken together, these results provide the basis for the use of SSA in the clinic to enhance treatment outcomes from cytotoxic antineoplastic therapy.


Subject(s)
Aging/physiology , Antineoplastic Agents/adverse effects , Cyclophosphamide/adverse effects , Gonadal Steroid Hormones/deficiency , Lymphopoiesis/physiology , Animals , Bone Marrow/drug effects , Bone Marrow/immunology , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Castration , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Lymphopoiesis/drug effects , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Thymus Gland/cytology , Thymus Gland/drug effects , Thymus Gland/immunology
12.
Trends Immunol ; 30(7): 366-73, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19540807

ABSTRACT

Chronic thymus involution associated with aging results in less efficient T-cell development and decreased emigration of naïve T cells to the periphery. Thymic decline in the aged is linked to increased morbidity and mortality in a wide range of clinical settings. Negative consequences of these effects on global health make it of paramount importance to understand the mechanisms driving thymic involution and homeostatic processes across the lifespan. There is growing evidence that thymus tissue is plastic and that the involution process might be therapeutically halted or reversed. We present here progress on the exploitation of thymosuppressive and thymostimulatory pathways using factors such as keratinocyte growth factor, interleukin 7 or sex steroid ablation for therapeutic thymus restoration and peripheral immune reconstitution in adults.


Subject(s)
Aging/immunology , Fibroblast Growth Factor 7/pharmacology , Gonadal Steroid Hormones/antagonists & inhibitors , Interleukin-7/pharmacology , Thymus Gland/drug effects , Thymus Gland/immunology , Animals , Cytokines/immunology , Fibroblast Growth Factor 7/immunology , Humans , Interleukin-7/immunology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , Thymus Gland/cytology
13.
J Immunol ; 182(10): 6247-60, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19414778

ABSTRACT

A significant decline in immune function is characteristic of aging. Along with the involution of the thymus and associated impaired architecture, which contributes to profound loss of naive T cell production, there are also significant declines in B cell development and the progenitors that support lymphopoiesis. These collectively lead to a reduced peripheral immune repertoire, increase in opportunistic infections, and limited recovery following cytoablation through chemo- or radiotherapy. We have previously shown that sex steroid ablation (SSA) causes a major reversal of age-related thymic atrophy and improves recovery from hematopoietic stem cell transplant. This study focused on the impact of SSA on the B cell compartment and their progenitors in middle-aged and cyclophosphamide-treated mice. In both models, SSA enhanced the number of lymphoid progenitors and developing B cells in the bone marrow (BM) as well as reversing age-related defects in the cycling kinetics of these cells. Enhanced BM lymphopoiesis was reflected in the periphery by an increase in recent BM emigrants as well as immature and mature plasma cells, leading to an enhanced humoral response to challenge by hepatitis B vaccine. In conclusion, SSA improves lymphoid progenitor and B cell recovery from age- and chemotherapy-induced immunodepletion, complimenting the effects on T cells. Since SSA has been achieved clinically for over 25 years, this provides a novel, rational basis for approaching the need for immune recovery in many clinical conditions.


Subject(s)
Aging/immunology , Antineoplastic Agents/adverse effects , Gonadal Steroid Hormones/deficiency , Gonadal Steroid Hormones/immunology , Lymphopoiesis/physiology , Animals , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Bone Marrow/drug effects , Bone Marrow/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Hematopoietic Stem Cells , Lymphopoiesis/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
14.
J Immunol ; 182(9): 5846-54, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19380833

ABSTRACT

Posttransplant immunodeficiency, specifically a lack of T cell reconstitution, is a major complication of allogeneic bone marrow transplantation. This immunosuppression results in an increase in morbidity and mortality from infections and very likely contributes to relapse. In this study, we demonstrate that sex steroid ablation using leuprolide acetate, a luteinizing hormone-releasing hormone agonist (LHRHa), increases the number of lymphoid and myeloid progenitor cells in the bone marrow and developing thymocytes in the thymus. Although few differences are observed in the peripheral myeloid compartments, the enhanced thymic reconstitution following LHRHa treatment and allogeneic bone marrow transplantation leads to enhanced peripheral T cell recovery, predominantly in the naive T cell compartment. This results in an increase in T cell function in vivo and in vitro. Graft-versus-host-disease is not exacerbated by LHRHa treatment and graft-versus-tumor activity is maintained. Because LHRHa allows for reversible (and temporary) sex steroid ablation, has a strong safety profile, and has been clinically approved for diseases such as prostate and breast cancer, this drug treatment represents a novel therapeutic approach to reversal of thymic atrophy and enhancement of immunity following immunosuppression.


Subject(s)
Bone Marrow Transplantation/immunology , Gonadotropin-Releasing Hormone/administration & dosage , T-Lymphocytes/drug effects , T-Lymphocytes/transplantation , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Bone Marrow Transplantation/pathology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Female , Gonadotropin-Releasing Hormone/agonists , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Graft vs Host Disease/therapy , Graft vs Tumor Effect/drug effects , Graft vs Tumor Effect/immunology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/pathology , Humans , Isoantigens/administration & dosage , Isoantigens/genetics , Leuprolide/administration & dosage , Lymphopenia/immunology , Lymphopenia/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Spleen/cytology , Spleen/drug effects , Spleen/immunology , T-Lymphocytes/pathology , Thymus Gland/cytology , Thymus Gland/drug effects , Thymus Gland/immunology
15.
Blood ; 113(7): 1574-80, 2009 Feb 12.
Article in English | MEDLINE | ID: mdl-19011222

ABSTRACT

Keratinocyte growth factor (KGF), which is given exogenously to allogeneic bone marrow transplantation (allo-BMT) recipients, supports thymic epithelial cells and increases thymic output of naive T cells. Here, we demonstrate that this improved T-cell reconstitution leads to enhanced responses to DNA plasmid tumor vaccination. Tumor-bearing mice treated with KGF and DNA vaccination have improved long-term survival and decreased tumor burden after allo-BMT. When assayed before vaccination, KGF-treated allo-BMT recipients have increased numbers of peripheral T cells, including CD8(+) T cells with vaccine-recognition potential. In response to vaccination, KGF-treated allo-BMT recipients, compared with control subjects, generate increased numbers of tumor-specific CD8(+) cells, as well as increased numbers of CD8(+) cells producing interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). We also found unanticipated benefits to antitumor immunity with the administration of KGF. KGF-treated allo-BMT recipients have an improved ratio of T effector cells to regulatory T cells, a larger fraction of effector cells that display a central memory phenotype, and effector cells that are derived from a broader T-cell-receptor repertoire. In conclusion, our data suggest that KGF can function as a potent vaccine adjuvant after allo-BMT through its effects on posttransplantation T-cell reconstitution.


Subject(s)
Bone Marrow Transplantation/immunology , Cancer Vaccines/immunology , Fibroblast Growth Factor 7/pharmacology , Thymus Gland/drug effects , Vaccines, DNA/immunology , Animals , Bone Marrow Transplantation/methods , Bone Marrow Transplantation/mortality , CD4 Antigens/metabolism , CD8-Positive T-Lymphocytes/cytology , Cell Division/drug effects , Cell Division/immunology , Female , Forkhead Transcription Factors/metabolism , Immunologic Memory/drug effects , Immunologic Memory/immunology , Lymphocyte Count , Mice , Mice, Inbred C57BL , Plasmids , Survival Rate , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Thymus Gland/cytology , Thymus Gland/immunology , Transplantation Chimera , Transplantation, Homologous
16.
Blood ; 113(4): 945-52, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-18931341

ABSTRACT

CD4(+) interleukin-17 (IL-17)(+) T cells (Th17 cells) have been implicated in allograft rejection of solid organs and several autoimmune diseases. However, the functional role of Th17 cells in the development of acute graft-versus-host disease (GVHD) has not been well-characterized. We detected significant numbers of alloreactive CD4(+) donor T cells expressing IL-17, IL-17F, or IL-22 in the lymphoid organs of recipients of an allogeneic bone marrow transplant. We found no differences in GVHD mortality or graft-versus-tumor (GVT) activity between wild type (WT) and IL-17(-/-) T-cell recipients. However, upon transfer of murine IL-17(-/-) CD4(+) T cells in an allogeneic BMT model, GVHD development was significantly delayed behind recipients of WT CD4(+) T cells, yet overall GVHD mortality was unaffected. Moreover, recipients of IL-17(-/-) CD4(+) T cells had significantly fewer Th1 cells during the early stages of GVHD. Furthermore, we observed a decrease in the number of IFN-gamma-secreting macrophages and granulocytes and decreased production of proinflammatory cytokines (interferon [IFN]-gamma, IL-4, and IL-6) in recipients of IL-17(-/-) CD4(+) T cells. We conclude that IL-17 is dispensable for GVHD and GVT activity by whole T cells, but contributes to the early development of CD4-mediated GVHD by promoting production of proinflammatory cytokines.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Interleukin-17/immunology , Animals , Bone Marrow Transplantation/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation , Female , Graft vs Host Disease/genetics , Graft vs Host Disease/metabolism , Interferon-gamma/blood , Interleukin-17/deficiency , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukins/immunology , Lymphocytes/immunology , Mice , Mice, Knockout , Spleen/cytology , Spleen/immunology , Transplantation, Homologous/immunology , Interleukin-22
17.
Semin Immunopathol ; 30(4): 479-87, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19015856

ABSTRACT

Hematopoietic stem cell transplantation is a curative therapy for hematological malignancies. T cell deficiency following transplantation is a major cause of morbidity and mortality. In this review, we discuss adoptive transfer of committed precursor cells to enhance T cell reconstitution and improve overall prognosis after transplantation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , Animals , Humans , Mice , T-Lymphocytes/cytology
18.
Blood ; 112(12): 4755-64, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18815289

ABSTRACT

Delayed T-cell recovery is an important complication of allogeneic bone marrow transplantation (BMT). We demonstrate in murine models that donor BM-derived T cells display increased apoptosis in recipients of allogeneic BMT with or without GVHD. Although this apoptosis was associated with a loss of Bcl-2 and Bcl-X(L) expression, allogeneic recipients of donor BM deficient in Fas-, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)- or Bax-, or BM-overexpressing Bcl-2 or Akt showed no decrease in apoptosis of peripheral donor-derived T cells. CD44 expression was associated with an increased percentage of BM-derived apoptotic CD4(+) and CD8(+) T cells. Transplantation of RAG-2-eGFP-transgenic BM revealed that proliferating eGFP(lo)CD44(hi) donor BM-derived mature T cells were more likely to undergo to apoptosis than nondivided eGFP(hi)CD44(lo) recent thymic emigrants in the periphery. Finally, experiments using carboxyfluorescein succinimidyl ester-labeled T cells adoptively transferred into irradiated syngeneic hosts revealed that rapid spontaneous proliferation (as opposed to slow homeostatic proliferation) and acquisition of a CD44(hi) phenotype was associated with increased apoptosis in T cells. We conclude that apoptosis of newly generated donor-derived peripheral T cells after an allogeneic BMT contributes to delayed T-cell reconstitution and is associated with CD44 expression and rapid spontaneous proliferation by donor BM-derived T cells.


Subject(s)
Apoptosis , Bone Marrow Transplantation , Cell Differentiation , Cell Proliferation , Hyaluronan Receptors/metabolism , T-Lymphocytes/physiology , Animals , Apoptosis/genetics , Apoptosis/immunology , Bone Marrow Transplantation/immunology , Bone Marrow Transplantation/rehabilitation , Cell Differentiation/physiology , Cells, Cultured , Female , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/physiology , Time Factors , Transplantation, Homologous , bcl-2-Associated X Protein/genetics , fas Receptor/genetics , fas Receptor/physiology
19.
Nat Biotechnol ; 26(4): 453-61, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18376399

ABSTRACT

We present a strategy for adoptive immunotherapy using T-lineage committed lymphoid precursor cells generated by Notch1-based culture. We found that allogeneic T-cell precursors can be transferred to irradiated individuals irrespective of major histocompatibility complex (MHC) disparities and give rise to host-MHC restricted and host-tolerant functional allogeneic T cells, improving survival in irradiated recipients as well as enhancing anti-tumor responses. T-cell precursors transduced to express a chimeric receptor targeting hCD19 resulted in significant additional anti-tumor activity, demonstrating the feasibility of genetic engineering of these cells. We conclude that ex vivo generated MHC-disparate T-cell precursors from any donor can be used universally for 'off-the-shelf' immunotherapy, and can be further enhanced by genetic engineering for targeted immunotherapy.


Subject(s)
Immunotherapy, Adoptive/methods , Major Histocompatibility Complex/genetics , Major Histocompatibility Complex/immunology , Neoplasms/immunology , Neoplasms/therapy , Precursor Cells, T-Lymphoid/immunology , Transfection/methods , Animals , Cell Line , Cell Line, Tumor , Humans , Mice , Transplantation, Homologous
20.
Blood Cells Mol Dis ; 40(1): 44-7, 2008.
Article in English | MEDLINE | ID: mdl-17905611

ABSTRACT

Hematopoietic stem cell transplantation (HSCT) is associated with a period of immune incompetence that particularly affects the T cell lineage. Strategies to enhance T cell reconstitution could significantly improve the survival of HSCT recipients by decreasing the incidence of fatal infectious complications and by enhancing graft-versus-tumor activity. In recent years, a variety of promising strategies have been established in preclinical models to improve T cell recovery in particular after allogeneic T cell-depleted HSCT, without aggravating graft-versus-host disease while preserving or even improving graft-versus-tumor activity. These therapies include treatment with keratinocyte growth factor (KGF), growth hormone (GH), LHRH agonists, interleukin 7 (IL-7) and interleukin 15 (IL-15). Thanks to the establishment of Notch-based culture systems, adoptive cellular therapies with T lineage-committed precursor cells have become feasible, since early T cell progenitors can now easily be generated in vitro in large quantities and have been proven to be very effective in enhancing T cell reconstitution and anti-tumor activity after allogeneic T cell-depleted HSCT. The translation of most of these strategies into clinical trials is likely and in some cases Phase I/II studies are already underway.


Subject(s)
Hematopoietic Stem Cell Transplantation/trends , Regeneration/drug effects , T-Lymphocytes/physiology , Cell Culture Techniques , Hematopoietic Stem Cells/cytology , Hormones/pharmacology , Humans , Immune System/physiology , Intercellular Signaling Peptides and Proteins/pharmacology , T-Lymphocytes/cytology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...