Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Biomater ; 172: 466-479, 2023 12.
Article in English | MEDLINE | ID: mdl-37788737

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.


Subject(s)
Bone Neoplasms , Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Antigens, Neoplasm , Neoplasms/metabolism , Bone Neoplasms/metabolism , Cell Communication , Tumor Microenvironment
2.
bioRxiv ; 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36865164

ABSTRACT

Cancer immunotherapy offers lifesaving treatments for cancers, but the lack of reliable preclinical models that could enable the mechanistic studies of tumor-immune interactions hampers the identification of new therapeutic strategies. We hypothesized 3D confined microchannels, formed by interstitial space between bio-conjugated liquid-like solids (LLS), enable CAR T dynamic locomotion within an immunosuppressive TME to carry out anti-tumor function. Murine CD70-specific CAR T cells cocultured with the CD70-expressing glioblastoma and osteosarcoma demonstrated efficient trafficking, infiltration, and killing of cancer cells. The anti-tumor activity was clearly captured via longterm in situ imaging and supported by upregulation of cytokines and chemokines including IFNg, CXCL9, CXCL10, CCL2, CCL3, and CCL4. Interestingly, target cancer cells, upon an immune attack, initiated an "immune escape" response by frantically invading the surrounding microenvironment. This phenomenon however was not observed for the wild-type tumor samples which remained intact and produced no relevant cytokine response. Single cells collection and transcriptomic profiling of CAR T cells at regions of interest revealed feasibility of identifying differential gene expression amongst the immune subpopulations. Complimentary 3D in vitro platforms are necessary to uncover cancer immune biology mechanisms, as emphasized by the significant roles of the TME and its heterogeneity.

3.
Life Sci Alliance ; 4(7)2021 07.
Article in English | MEDLINE | ID: mdl-34127518

ABSTRACT

Aggregation and accumulation of amyloid-ß (Aß) is a defining feature of Alzheimer's disease pathology. To study microglial responses to Aß, we applied exogenous Aß peptide, in either oligomeric or fibrillar conformation, to primary mouse microglial cultures and evaluated system-level transcriptional changes and then compared these with transcriptomic changes in the brains of CRND8 APP mice. We find that primary microglial cultures have rapid and massive transcriptional change in response to Aß. Transcriptomic responses to oligomeric or fibrillar Aß in primary microglia, although partially overlapping, are distinct and are not recapitulated in vivo where Aß progressively accumulates. Furthermore, although classic immune mediators show massive transcriptional changes in the primary microglial cultures, these changes are not observed in the mouse model. Together, these data extend previous studies which demonstrate that microglia responses ex vivo are poor proxies for in vivo responses. Finally, these data demonstrate the potential utility of using microglia as biosensors of different aggregate conformation, as the transcriptional responses to oligomeric and fibrillar Aß can be distinguished.


Subject(s)
Amyloid beta-Peptides/genetics , Microglia/metabolism , Neurofibrillary Tangles/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/physiology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Female , Gene Expression/genetics , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Microglia/physiology , Primary Cell Culture , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL