Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Molecules ; 29(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38398571

ABSTRACT

Novel modified Zn-Al LDH/epoxy coatings are synthesized and applied to steel substrates, providing active corrosion protection and improved barrier properties. This protective coating is made by combining Epon 828 as a polymer matrix with modified layered-double-hydroxy (LDH) nanoparticles acting as corrosion inhibitor containers. To synthesize the coatings, nitrate was intercalated into Zn-Al-LDH layers through an aqueous co-precipitation method to obtain Zn-Al LDH-NO3, and decavanadate replaced nitrate within the LDH layers through an anion exchange process to obtain Zn-Al LDH-(V10O28)6-. The intercalated LDH was functionalized by silanization with (3-aminopropyl)triethoxysilane (APTES) to increase the compatibility of the LDH inhibitor nanocontainers with epoxy resin and produce a protective coating. To protect the mild steel substrate, functionalized LDH nanopowders were dispersed into the epoxy resin, mixed with a polyamide hardener (Epikure 3571), and applied and cured to the metal surface. Surface morphology, structure, and chemical composition were determined for the modified LDH nanopowders using scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Corrosion protection of the coating system was studied using long-term immersion testing and potentiodynamic polarization studies in a 3.5 wt.% NaCl solution.

2.
Phys Chem Chem Phys ; 25(29): 19540-19552, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37395083

ABSTRACT

The production of ammonia for agricultural and energy demands has accelerated research for more environmentally-friendly synthesis options, particularly the electrocatalytic reduction of molecular nitrogen (nitrogen reduction reaction, NRR). Catalyst activity for NRR, and selectivity for NRR over the competitive hydrogen evolution reaction (HER), are critical issues for which fundamental knowledge remains scarce. Herein, we present results regarding the NRR activity and selectivity of sputter-deposited titanium nitride and titanium oxynitride films for NRR and HER. Electrochemical, fluorescence and UV absorption measurements show that titanium oxynitride exhibits NRR activity under acidic conditions (pH 1.6, 3.2) but is inactive at pH 7. Ti oxynitride is HER inactive at all these pH values. In contrast, TiN - with no oxygen content upon deposition - is both NRR and HER inactive at all the above pH values. This difference in oxynitride/nitride reactivity is observed despite the fact that both films exhibit very similar surface chemical compositions - predominantly TiIV oxide - upon exposure to ambient, as determined by ex situ X-ray photoelectron spectroscopy (XPS). XPS, with in situ transfer between electrochemical and UHV environments, however, demonstrates that this TiIV oxide top layer is unstable under acidic conditions, but stable at pH 7, explaining the inactivity of titanium oxynitride at this pH. The inactivity of TiN at acidic and neutral pH is explained by DFT-based calculations showing that N2 adsorption at N-ligated Ti centers is energetically significantly less favorable than at O-ligated centers. These calculations also predict that N2 will not bind to TiIV centers due to a lack of π-backbonding. Ex situ XPS measurements and electrochemical probe measurements at pH 3.2 demonstrate that Ti oxynitride films undergo gradual dissolution under NRR conditions. The present results demonstrate that the long-term catalyst stability and maintenance of metal cations in intermediate oxidation states for pi-backbonding are critical issues worthy of further examination.

3.
Molecules ; 27(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36235087

ABSTRACT

In this study, the inhibitive performance of pyridine-2-thiol added to a corrosive solution was investigated for brass using potentiodynamic polarization, electrochemical impedance spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical experiments were performed with different inhibitor concentrations in 0.5 M H2SO4 as the corrosive medium. For potentiodynamic polarization, icorr values decreased significantly for the inhibited solutions in contrast with the uninhibited solution. Pyridine-2-thiol had an optimum inhibition concentration of 0.25 mM, giving an icorr value of 1.8 µA/cm2 compared to 26 µA/cm2 for the blank solution. EIS data indicated that Rp and Rct values increased substantially after the addition of the corrosion inhibitor and corrosion inhibition efficiencies of more than 85% was achieved for the majority of the inhibited solutions. Scanning electron microscopy showed defect free and less scale formation for the inhibited surface but the bare brass surface had larger amounts of scale formation. X-ray photoelectron spectroscopy and UV-vis spectroscopy was used to investigate surface chemical composition and inhibitor structural changes over time.


Subject(s)
Caustics , Copper/chemistry , Corrosion , Pyridines , Sulfhydryl Compounds , Zinc
4.
Materials (Basel) ; 14(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34885543

ABSTRACT

Modified zaccagnaite layered double hydroxide (LDH) type films were synthesized on steel substrates by pulsed electrochemical deposition from aqueous solutions. The resulting films were characterized by X-ray diffraction, scanning electron microscopy/X-ray dispersive spectroscopy, and Fourier transform infrared spectroscopy. Structural characterization indicated a pure layered double hydroxide phase; however, elemental analysis revealed that the surface of the films contained Zn:Al ratios outside the typical ranges of layered double hydroxides. Layer thickness for the deposited films ranged from approximately 0.4 to 3.0 µm. The corrosion resistance of the film was determined using potentiodynamic polarization experiments in 3.5 wt.% NaCl solution. The corrosion current density for the coatings was reduced by 82% and the corrosion potential was shifted 126 mV more positive when 5 layers of modified LDH coatings were deposited onto the steel substrates. A mechanism was proposed for the corroding reactions at the coating.

5.
Phys Chem Chem Phys ; 22(42): 24640-24648, 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33099593

ABSTRACT

The chemical structures of Co oxynitrides - in particular, interactions among N and O atoms bonded to the same cobalt - are of great importance for an array of catalytic and materials applications. X-ray diffraction (XRD), core and valence band X-ray photoelectron spectroscopy (XPS) and plane wave density functional theory (DFT) calculations are used to probe chemical and electronic interactions of nitrogen-rich CoO1-xNx (x > 0.7) films deposited on Si(100) using NH3 or N2 plasma-based sputter deposition or surface nitridation. Total energy calculations indicate that the zinc blende (ZB) structure is energetically favored over the rocksalt (RS) structure for x > ∼0.2, with an energy minimum observed in the ZB structure for x∼ 0.8-0.9. This is in close agreement with XPS-derived film compositions when corrected for surface oxide/hydroxide layers. XRD data indicate that films deposited on Si(100) at room temperature display either a preferred (220) orientation or no diffraction pattern, and are consistent with either rocksalt (RS) or zinc blende (ZB) structure. Comparison between experimental and calculated X-ray excited valence band densities of states - also similar for all films synthesized herein - demonstrates a close agreement with a ZB, but not an RS structure. Core level XPS spectra exhibit systematic differences between films deposited in NH3 vs N2 plasma environments. Films deposited by N2 plasma magnetron sputtering exhibit greater O content as evidenced by systematic shifts in N 1s binding energies. Excellent agreement with experiment for core level binding energies is obtained for DFT calculations based on the ZB structure, but not for the RS structure. The agreement between theory and experiment demonstrates that these N-rich Co oxynitride films exhibit the ZB structure, and forms the basis of a predictive model for understanding how N and O interactions impact the electronic, magnetic and catalytic properties of these materials.

6.
Nanomaterials (Basel) ; 9(9)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31491898

ABSTRACT

A dense array of vertically aligned indium antimonide (InSb) nanowires with high aspect ratio (diameter 150 nm, length 20 µ m) were grown in the pores of a track-etched polycarbonate membrane via a one-step electrochemical method. There are several reports on InSb nanowire growth in the pores of a mechanically rigid, nano-channel alumina template (NCA), where nanowire growth occurs in the pores of the NCA. This work on InSb nanowire growth in pores of track-etched polycarbonate (PC) membrane sheds light on the various factors that affect nucleation and nanowire growth. The average length and diameter of the as-grown nanowires was about 10 µ m and 150 nm, respectively. Two possible mechanisms accounting for two different morphologies of the as-grown nanowires are proposed. The polycrystallinity observed in some of the nanowires is explained using the 3D 'nucleation-coalescence' mechanism. On the other hand, single crystal nanowires with a high density of twin defects and stacking faults grow epitaxially by a two-dimensional (2D) nucleation/growth mechanism. To assess the electrical quality of the nanowires, two- and four-terminal devices were fabricated using a single InSb nanowire contacted by two Ni electrodes. It was found that, at low bias, the ohmic current is controlled by charge diffusion from the bulk contacts. On the other hand, at high bias, the effects of space charge limited current (SCLC) are evident in the current-voltage behavior, characteristic of transport through structures with reduced electrostatic screening. A cross-over from ohmic to SCLC occurs at about 0.14 V, yielding a free carrier concentration of the order of 10 14 cm - 3 .

7.
Int J Biomater ; 2019: 3806504, 2019.
Article in English | MEDLINE | ID: mdl-31275394

ABSTRACT

To improve the biocompatibility of medical implants, a chemical composition of bone-like material (e.g., hydroxyapatite) can be deposited on the surface of various substrates. When hydroxyapatite is deposited on surfaces of orthopedic implants, several parameters must be addressed including the need of rapid bone ingrowth, high mechanical stability, corrosion resistance, biocompatibility, and osseointegration induction. However, the deposition process can fail due to poor adhesion of the hydroxyapatite coating to the metallic substrate. Increasing adhesion by enhancing chemical bonding and minimizing biocoating degradation can be achieved through surface activation and pretreatment techniques. Surface activation can increase the adhesion of the biocoating to implants, providing protection in the biological environment and restricting the leaching of metal ions in vivo. This review covers the main surface activation and pretreatment techniques for substrates such as titanium and its alloys, stainless steel, magnesium alloys, and CoCrMo alloys. Alkaline, acidic, and anodizing techniques and their effects on bioapatite deposition are discussed for each of the substrates. Other chemical treatment and combination techniques are covered when used for certain materials. For titanium, the surface pretreatments improve the thickness of the TiO2 passive layer, improving adhesion and bonding of the hydroxyapatite coating. To reduce corrosion and wear rates on the surface of stainless steel, different surface modifications enhance the bonding between the bioapatite coatings and the substrate. The use of surface modifications also improves the morphology of hydroxyapatite coatings on magnesium surfaces and limits the concentration of magnesium ions released into the body. Surface treatment of CoCrMo alloys also decreased the concentration of harmful ions released in vivo. The literature covered in this review is for pretreated surfaces which then undergo deposition of hydroxyapatite using electrodeposition or other wet deposition techniques and mainly limited to the years 2000-2019.

8.
Langmuir ; 35(17): 5841-5847, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30969777

ABSTRACT

Electroless functionalization of cerium oxide nanoparticles (NPs) based on the grafting of aryl groups from the reduction of diazonium salts is presented as a useful and facile method for enhancing the properties of the NPs. For this study, 4-methyl-, 4-ethyl-, and 4- n-butyl-benzene diazonium salts were used as model molecules to demonstrate the ability to change the hydrophobic properties of the cerium oxide (CeO2) NPs. The grafting reaction was investigated under two reducing environments: the addition of a chemical reducing agent and the use of cerium oxide's native reducing property. Spectroscopic evidence for the successful attachment of aryl groups to the CeO2 NPs was given by infrared and 13C SS-NMR, which clearly detect characteristic aryl C-C peaks and the alkyl chains. X-ray diffraction results confirmed that the NPs underlying the crystal structure was unaffected by the grafting process. Thermal gravimetric analysis of the NPs suggested that this method enables the formation of multilayers at the surface, as well as an increase in the hydrophobic character. Hydrophobic properties of the resultant NPs further examined with a water contact angle test on pressed pellets revealed increase in hydrophobicity with increasing alkyl chain length. This research opens up new possibilities for controlling the surface chemical composition of CeO2 NPs as well as other NPs using procedures operated in aqueous environments at room temperature.

9.
Sci Justice ; 56(5): 329-340, 2016 09.
Article in English | MEDLINE | ID: mdl-27702448

ABSTRACT

Laser ablation has been applied to redacted documents, where the text has been concealed by other ink. This technique strips the redacting ink revealing the text that was once redacted. Once removed, a nanomanipulation technique is used to extract the ink of the underlying text where mass spectrometry is then implemented to analyze its ink chemistry. In order to facilitate microscopy with direct analyte-probed nanoextraction coupled to nanospray ionization mass spectrometry (DAPNe-NSI-MS), laser ablation must be executed prior to ink extraction. Laser ablation has a nondestructive approach of stripping the ink used to redact the document. Not only does this reveal the text, it clears an area for DAPNe to directly extract ink, in miniscule amounts, from the document without inducing destruction. The redacting ink was concluded to affect the aging process of the concealed handwritten ink more than the printed text. The redacted handwritten sample obtained higher relative peak area (%) values than the control samples (text that was not redacted) and the control for the printed text produced higher amounts of low molecular weight products than the sample. Implementing laser ablation on these samples could also affect the chemical properties of the underlying ink due to the additional UV radiation and plasma heating. Results indicate by using laser ablation to remove the redacting ink, the relative peak area of the underlying ink deviates by 1.25%. The thermal degradation of binding agents such as polymethylene, polyethylene glycol, and diethylene glycol was monitored by calculating the relative peak area for five days which, in turn, tracks the oxidation process. The relative peak area values were also used to determine the chemical kinetics of polyethylene glycol, where degradation and polymerization occur.

10.
Forensic Sci Int Genet ; 19: 180-189, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26240969

ABSTRACT

Forensic DNA samples may include the presence of PCR inhibitors, even after extraction and purification. Studies have demonstrated that metal ions, co-purified at specific concentrations, inhibit DNA amplifications. Metal ions are endogenous to sample types, such as bone, and can be introduced from environmental sources. In order to examine the effect of metal ions as PCR inhibitors during quantitative real-time PCR, 2800 M DNA was treated with 0.0025-18.750 mM concentrations of aluminum, calcium, copper, iron, nickel, and lead. DNA samples, both untreated and metal-treated, were quantified using the Quantifiler(®) Human DNA Quantification Kit. Quantification cycle (Cq) values for the Quantifiler(®) Human DNA and internal PCR control (IPC) assays were measured and the estimated concentrations of human DNA were obtained. Comparisons were conducted between metal-treated and control DNA samples to determine the accuracy of the quantification estimates and to test the efficacy of the IPC inhibition detection. This kit is most resistant to the presence of calcium as compared to all metals tested; the maximum concentration tested does not affect the amplification of the IPC or quantification of the sample. This kit is most sensitive to the presence of aluminum; concentrations greater than 0.0750 mM negatively affected the quantification, although the IPC assay accurately assessed the presence of PCR inhibition. The Quantifiler(®) Human DNA Quantification Kit accurately quantifies human DNA in the presence of 0.5000 mM copper, iron, nickel, and lead; however, the IPC does not indicate the presence of PCR inhibition at this concentration of these metals. Unexpectedly, estimates of DNA quantity in samples treated with 18.750 mM copper yielded values in excess of the actual concentration of DNA in the samples; fluorescence spectroscopy experiments indicated this increase was not a direct interaction between the copper metal and 6-FAM dye used to label the probe that targets human DNA in the Quantifiler(®) kit. Evidence of inhibition was observed for the human-specific assay at a lower metal concentration than detected by the IPC, for all metals examined except calcium. These results strongly suggest that determination of a "true negative" sample should not be based solely on the failure of the IPC to indicate the presence of a PCR inhibitor and indicate that amplification of all samples should be attempted, regardless of the quantification results.


Subject(s)
DNA/genetics , Forensic Genetics , Metals/chemistry , Humans , Polymerase Chain Reaction , Spectrometry, Fluorescence
11.
ACS Appl Mater Interfaces ; 7(1): 830-7, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25455203

ABSTRACT

Cuprous oxide (Cu2O) nanorod arrays have been prepared via a novel templated electrodeposition process and were characterized for their photocatalytic behavior in nonaqueous photoelectrochemical cells. Zinc oxide (ZnO) nanorod films serve as sacrificial templates for the in situ formation of polymer nanopore membranes on transparent conductive oxide substrates. Nitrocellulose and poly(lactic acid) are effective membrane-forming polymers that exhibit different modes of template formation, with nitrocellulose forming conformal coatings on the ZnO surface while poly(lactic acid) acts as an amorphous pore-filling material. Robust template formation is sensitive to the seeding method used to prepare the precursor ZnO nanorod films. Photoelectrochemical cells prepared from electrodeposited Cu2O films using methyl viologen as a redox shuttle in acetonitrile electrolyte exhibit significant charge recombination that can be partially suppressed by a combination of surface passivation methods. Surface-passivated nanostructured Cu2O films show enhanced photocurrent relative to planar electrodeposited Cu2O films of similar thickness. We have obtained the highest photocurrent ever reported for electrodeposited Cu2O in a nonaqueous photoelectrochemical cell.

12.
Forensic Sci Int ; 242: 150-156, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25063931

ABSTRACT

A method for the extraction and analysis of ink samples was developed using microscopy with direct analyte probe nanoextraction coupled to nanospray ionization mass spectrometry (DAPNe-NSI-MS) for localized chemical analysis of document inks. Nanomanipulation can be effectively coupled to nanospray ionization mass spectrometry providing picomolar sensitivity, and the capability to analyze ultra-trace amounts of material and reduce the required sample volume to as low as 300 nL. This new and innovative technique does not leave destructive footprints on the surface of a document. To demonstrate the breadth of this technique, analysis of inks from various eras were tested, iron gall ink and modern inks, as well as the capability to detect the oxidative products of polyethylene glycol (PEG), a common binding agent. The experimental results showed that DAPNe-NSI-MS was able to chelate iron(II) and manganese(II) ions of iron gall ink and organic components of modern and carbon-based inks. Regardless of whether the ink composition is modern or ancient, organic or inorganic, this new instrumental approach is able to identify and characterize the ingredients by modifying the extraction solvent, illustrating the potential diversity of the DAPNe technique.

13.
Environ Sci Technol ; 38(3): 892-8, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-14968879

ABSTRACT

Using surface flow constructed wetlands for long-term phosphorus (P) retention presents a challenge due to the fact that P is stored primarily in the sediments. Subsurface flow wetlands have the potential to greatly increase P retention; however, the substrate needs to have both high hydraulic conductivity and high P sorption capacity. The objective of our study was to assess the P retention capacity of two substrates, masonry sand and lightweight expanded shale. We used sorption/desorption isotherms, flow-through column experiments, and pilot-scale wetlands to quantify P retained from treated municipal wastewater. Langmuir sorption isotherms predicted that the expanded shale has a maximum sorption capacity of 971 mg/kg and the masonry sand 58.8 mg/kg. In column desorption and column flow-through experiments, the masonry sand desorbed P when exposed to dilute P solutions. The expanded shale, however, had very little desorption and phosphorus did not break through the columns during our experiment. In pilot cells, masonry sand retained (mean +/- standard deviation) 45 +/- 62 g P/m2/yr and expanded shale retained 164 +/- 110 g P/m2/yr. We conclude that only the expanded shale would be a suitable substrate for retaining P in a subsurface flow wetland.


Subject(s)
Construction Materials , Ecosystem , Phosphorus/analysis , Water Purification/methods , Biodegradation, Environmental , Environmental Monitoring , Geologic Sediments/chemistry , Phosphorus/chemistry , Phosphorus/isolation & purification , Silicon Dioxide , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...