Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 8: 1576, 2017.
Article in English | MEDLINE | ID: mdl-28955364

ABSTRACT

The olive tree is a crop of high socio-economical importance in the Mediterranean area. Sexual reproduction in this plant is an essential process, which determines the yield. Successful fertilization is mainly favored and sometimes needed of the presence of pollen grains from a different cultivar as the olive seizes a self-incompatibility system allegedly determined of the sporophytic type. The purpose of the present study was to identify key gene products involved in the function of olive pollen and pistil, in order to help elucidate the events and signaling processes, which happen during the courtship, pollen grain germination, and fertilization in olive. The use of subtractive SSH libraries constructed using, on the one hand one specific stage of the pistil development with germinating pollen grains, and on the other hand mature pollen grains may help to reveal the specific transcripts involved in the cited events. Such libraries have also been created by subtracting vegetative mRNAs (from leaves), in order to identify reproductive sequences only. A variety of transcripts have been identified in the mature pollen grains and in the pistil at the receptive stage. Among them, those related to defense, transport and oxidative metabolism are highlighted mainly in the pistil libraries where transcripts related to stress, and response to biotic and abiotic stimulus have a prominent position. Extensive lists containing information as regard to the specific transcripts determined for each stage and tissue are provided, as well as functional classifications of these gene products. Such lists were faced up to two recent datasets obtained in olive after transcriptomic and genomic approaches. The sequences and the differential expression level of the SSH-transcripts identified here, highly matched the transcriptomic information. Moreover, the unique presence of a representative number of these transcripts has been validated by means of qPCR approaches. The construction of SSH libraries using pistil and pollen, considering the high interaction between male-female counterparts, allowed the identification of transcripts with important roles in stigma physiology. The functions of many of the transcripts obtained are intimately related, and most of them are of pivotal importance in defense, pollen-stigma interaction and signaling.

2.
Front Plant Sci ; 6: 561, 2015.
Article in English | MEDLINE | ID: mdl-26257764

ABSTRACT

In Nicotiana tabacum, female gametophytes are not fully developed at anthesis, but flower buds pollinated 12 h before anthesis produce mature embryo sacs. We investigated several pollination-associated parameters in N. tabacum flower buds to determine the developmental timing of important events in preparation for successful fertilization. First, we performed hand pollinations in flowers from stages 4 to 11 to study at which developmental stage pollination would produce fruits. A Peroxtesmo test was performed to correlate peroxidase activity on the stigma surface, indicative of stigma receptivity, with fruit set. Pollen tube growth and female gametophyte development were microscopically analyzed in pistils of different developmental stages. Fruits were obtained only after pollinations of flower buds at late stage 7 and older; fruit weight and seed germination capacity increased as the developmental stage of the pollinated flower approached anthesis. Despite positive peroxidase activity and pollen tube growth, pistils at stages 5 and 6 were unable to produce fruits. At late stage 7, female gametophytes were undergoing first mitotic division. After 24 h, female gametophytes of unpollinated pistils were still in the end of the first division, whereas those of pollinated pistils showed egg cells. RT-qPCR assay showed that the expression of the NtEC1 gene, a marker of egg cell development, is considerably higher in pollinated late stage 7 ovaries compared with unpollinated ovaries. To test whether ethylene is the signal eliciting female gametophyte maturation, the expression of ACC synthase was examined in unpollinated and pollinated stage 6 and late stage 7 stigmas/styles. Pollination induced NtACS expression in stage 6 pistils, which are unable to produce fruits. Our results show that pollination is a stimulus capable of triggering female gametophyte development in immature tobacco flowers and suggests the existence of a yet undefined signal sensed by the pistil.

3.
FEMS Yeast Res ; 13(3): 277-90, 2013 May.
Article in English | MEDLINE | ID: mdl-23360418

ABSTRACT

Brazil played a pioneering role in the global establishment of the sugarcane bioethanol industry. The bioethanol fermentation process currently used in Brazil is unique due to the acid wash and recycling of yeast cells. Two, industrially adopted, wild yeast strains, CAT-1 and PE-2, have become the most widely used in Brazil. How these strains respond to the unique fermentation process is poorly understood. The improved performance of CAT-1 and PE-2 is hypothesised to be related to enhanced stress tolerance. This study presents a genome-wide analysis of the CAT-1 and PE-2 transcriptomes during a small-scale fermentation process that mimicked the industrial conditions. The common and unique transcriptional responses of the two strains to the Brazilian fermentation process were identified. Environmental stress response genes were up-regulated postfermenter feeding, demonstrating the impact of the prior acid wash and high glucose environment. Cell wall and oxidative stress tolerance were subsequently demonstrated to be enhanced for the industrial strains. Conversely, numerous genes involved in protein synthesis were down-regulated at the end of fermentation revealing the later impact of ethanol-induced stress. Subsequently, the industrial strains demonstrated a greater tolerance of ethanol and the disruption of endoplasmic reticulum homoeostasis. This increased ethanol tolerance was finally correlated with an increased unfolded protein response and increased HAC1 splicing.


Subject(s)
Gene Expression Profiling , Industrial Microbiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharum/metabolism , Brazil , Ethanol/metabolism , Fermentation , Saccharomyces cerevisiae/isolation & purification
4.
Med Mycol ; 48(1): 147-54, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19568977

ABSTRACT

Paracoccidioides brasiliensis infectious process relies on the initial expression of virulence factors that are assumed to be controlled by molecular mechanisms through which the conidia and/or mycelial fragments convert to yeast cells. In order to analyze the profile of the thermally-induced dimorphic gene expression, 48 h C-L transition cultures which had been incubated at 36 degrees C were studied. By this time approximately 50% of the conidial population had already reverted to yeast form cells. At this transition time, an EST-Orestes library was constructed and characterized. As a result, 79 sequences were obtained, of which 39 (49.4%) had not been described previously in other libraries of this fungus and which could represent novel exclusive C-Y transition genes. Two of these sequences are, among others, cholestanol delta-isomerase, and electron transfer flavoprotein-ubiquinoneoxidoreductase (ETF-QO). The other 40/79 (50.6%) sequences were shared with Mycelia (M), Yeast (Y) or Mycelia to yest transition (M-Y) libraries. An important component of this group of sequences is a putative response regulator receiver SKN7, a protein of high importance in stress adaptation and a regulator of virulence in some bacteria and fungi. This is the first report identifying genes expressed during the C-Y transition process, the initial step required to understand the natural history of P. brasiliensis conidia induced infection.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Fungal , Paracoccidioides/physiology , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Mycelium/genetics , Mycelium/growth & development , Mycelium/physiology , Paracoccidioides/genetics , Paracoccidioides/growth & development , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/physiology , Yeasts/genetics , Yeasts/growth & development , Yeasts/physiology
5.
Genetics ; 167(4): 1629-41, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15342504

ABSTRACT

The DNA damage response is a protective mechanism that ensures the maintenance of genomic integrity. We have used Aspergillus nidulans as a model system to characterize the DNA damage response caused by the antitopoisomerase I drug, camptothecin. We report the molecular characterization of a p34Cdc2-related gene, npkA, from A. nidulans. The npkA gene is transcriptionally induced by camptothecin and other DNA-damaging agents, and its induction in the presence of camptothecin is dependent on the uvsBATR gene. There were no growth defects, changes in developmental patterns, increased sensitivity to DNA-damaging agents, or effects on septation or growth rate in the A. nidulans npkA deletion strain. However, the DeltanpkA mutation can partially suppress HU sensitivity caused by the DeltauvsBATR and uvsD153ATRIP checkpoint mutations. We demonstrated that the A. nidulans uvsBATR gene is involved in DNA replication and the intra-S-phase checkpoints and that the DeltanpkA mutation can suppress its intra-S-phase checkpoint deficiency. There is a defect in both the intra-S-phase and DNA replication checkpoints due to the npkA inactivation when DNA replication is slowed at 6 mm HU. Our results suggest that the npkA gene plays a role in cell cycle progression during S-phase as well as in a DNA damage signal transduction pathway in A. nidulans.


Subject(s)
Aspergillus nidulans/genetics , CDC2 Protein Kinase/genetics , DNA Damage , Amino Acid Sequence , Aspergillus nidulans/enzymology , Base Sequence , CDC2 Protein Kinase/metabolism , Cloning, Molecular , DNA Primers , DNA Topoisomerases, Type I/genetics , Molecular Sequence Data , Sequence Alignment , Sequence Homology, Amino Acid , Topoisomerase I Inhibitors
6.
Mol Plant Microbe Interact ; 17(8): 827-36, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15305603

ABSTRACT

The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.


Subject(s)
Actinomycetales/genetics , Genome, Bacterial , Actinomycetales/classification , Base Composition , Genes, Bacterial , Molecular Sequence Data , Pseudogenes , Saccharum/microbiology
7.
Genome Res ; 14(7): 1413-23, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15197164

ABSTRACT

We report the results of a transcript finishing initiative, undertaken for the purpose of identifying and characterizing novel human transcripts, in which RT-PCR was used to bridge gaps between paired EST clusters, mapped against the genomic sequence. Each pair of EST clusters selected for experimental validation was designated a transcript finishing unit (TFU). A total of 489 TFUs were selected for validation, and an overall efficiency of 43.1% was achieved. We generated a total of 59,975 bp of transcribed sequences organized into 432 exons, contributing to the definition of the structure of 211 human transcripts. The structure of several transcripts reported here was confirmed during the course of this project, through the generation of their corresponding full-length cDNA sequences. Nevertheless, for 21% of the validated TFUs, a full-length cDNA sequence is not yet available in public databases, and the structure of 69.2% of these TFUs was not correctly predicted by computer programs. The TF strategy provides a significant contribution to the definition of the complete catalog of human genes and transcripts, because it appears to be particularly useful for identification of low abundance transcripts expressed in a restricted set of tissues as well as for the delineation of gene boundaries and alternatively spliced isoforms.


Subject(s)
Software , Transcription, Genetic/genetics , Alternative Splicing/genetics , Cell Line , Cell Line, Tumor , Computational Biology/methods , Computational Biology/statistics & numerical data , Consensus Sequence/genetics , DNA, Neoplasm , Databases, Genetic/classification , Expressed Sequence Tags , Genes/genetics , Genome, Human , HeLa Cells/pathology , Humans , Molecular Sequence Data , Open Reading Frames/genetics , Software Design , Software Validation , U937 Cells/pathology
8.
Plant Physiol ; 134(3): 951-9, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15020759

ABSTRACT

Over 40,000 sugarcane (Saccharum officinarum) consensus sequences assembled from 237,954 expressed sequence tags were compared with the protein and DNA sequences from other angiosperms, including the genomes of Arabidopsis and rice (Oryza sativa). Approximately two-thirds of the sugarcane transcriptome have similar sequences in Arabidopsis. These sequences may represent a core set of proteins or protein domains that are conserved among monocots and eudicots and probably encode for essential angiosperm functions. The remaining sequences represent putative monocot-specific genetic material, one-half of which were found only in sugarcane. These monocot-specific cDNAs represent either novelties or, in many cases, fast-evolving sequences that diverged substantially from their eudicot homologs. The wide comparative genome analysis presented here provides information on the evolutionary changes that underlie the divergence of monocots and eudicots. Our comparative analysis also led to the identification of several not yet annotated putative genes and possible gene loss events in Arabidopsis.


Subject(s)
Magnoliopsida/classification , Magnoliopsida/genetics , Saccharum/classification , Saccharum/genetics , Arabidopsis/classification , Arabidopsis/genetics , Chromosomes, Plant/genetics , Consensus Sequence , Evolution, Molecular , Expressed Sequence Tags , Genome, Plant , Oryza/classification , Oryza/genetics , Transcription, Genetic
9.
Genetics ; 164(3): 935-45, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12871905

ABSTRACT

The Mre11-Rad50-Nbs1 protein complex has emerged as a central player in the human cellular DNA damage response, and recent observations suggest that these proteins are at least partially responsible for the linking of DNA damage detection to DNA repair and cell cycle checkpoint functions. Mutations in scaA(NBS1), which encodes the apparent homolog of human nibrin in Aspergillus nidulans, inhibit growth in the presence of the antitopoisomerase I drug camptothecin. This article describes the selection and characterization of extragenic suppressors of the scaA1 mutation, with the aim of identifying other proteins that interfere with the pathway or complex in which the ScaA would normally be involved. Fifteen extragenic suppressors of the scaA1 mutation were isolated. The topoisomerase I gene can complement one of these suppressors. Synergistic interaction between the scaA(NBS1) and scsA(TOP1) genes in the presence of DNA-damaging agents was observed. Overexpression of topoisomerase I in the scaA1 mutant causes increased sensitivity to DNA-damaging agents. The scsA(TOP1) and the scaA(NBS1) gene products could functionally interact in pathways that either monitor or repair DNA double-strand breaks.


Subject(s)
Cell Cycle Proteins/genetics , DNA Repair/genetics , DNA Topoisomerases, Type I/genetics , Fungal Proteins/genetics , Gene Expression , Suppression, Genetic/genetics , Aspergillus nidulans , Base Sequence , Camptothecin , Crosses, Genetic , DNA Primers , Electrophoretic Mobility Shift Assay , Microscopy, Fluorescence , Molecular Sequence Data , Mutagenesis , Mutation/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...