Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Microbiol Mol Biol Rev ; 88(2): e0007623, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38819148

ABSTRACT

SUMMARYHistoplasmosis is arguably the most common fungal respiratory infection worldwide, with hundreds of thousands of new infections occurring annually in the United States alone. The infection can progress in the lung or disseminate to visceral organs and can be difficult to treat with antifungal drugs. Histoplasma, the causative agent of the disease, is a pathogenic fungus that causes life-threatening lung infections and is globally distributed. The fungus has the ability to germinate from conidia into either hyphal (mold) or yeast form, depending on the environmental temperature. This transition also regulates virulence. Histoplasma and histoplasmosis have been classified as being of emergent importance, and in 2022, the World Health Organization included Histoplasma as 1 of the 19 most concerning human fungal pathogens. In this review, we synthesize the current understanding of the ecological niche, evolutionary history, and virulence strategies of Histoplasma. We also describe general patterns of the symptomatology and epidemiology of histoplasmosis. We underscore areas where research is sorely needed and highlight research avenues that have been productive.


Subject(s)
Genetic Variation , Histoplasma , Histoplasmosis , Histoplasma/genetics , Histoplasma/pathogenicity , Histoplasmosis/microbiology , Humans , Virulence/genetics , Animals , Genotype
2.
mSphere ; 9(6): e0000924, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38771035

ABSTRACT

Histoplasmosis is an endemic mycosis that often presents as a respiratory infection in immunocompromised patients. Hundreds of thousands of new infections are reported annually around the world. The etiological agent of the disease, Histoplasma, is a dimorphic fungus commonly found in the soil where it grows as mycelia. Humans can become infected by Histoplasma through inhalation of its spores (conidia) or mycelial particles. The fungi transition into the yeast phase in the lungs at 37°C. Once in the lungs, yeast cells reside and proliferate inside alveolar macrophages. Genomic work has revealed that Histoplasma is composed of at least five cryptic phylogenetic species that differ genetically. Three of those lineages have received new names. Here, we evaluated multiple phenotypic characteristics (colony morphology, secreted proteolytic activity, yeast size, and growth rate) of strains from five of the phylogenetic species of Histoplasma to identify phenotypic traits that differentiate between these species: Histoplasma capsulatum sensu stricto, Histoplasma ohiense, Histoplasma mississippiense, Histoplasma suramericanum, and an African lineage. We report diagnostic traits for three species. The other two species can be identified by a combination of traits. Our results suggest that (i) there are significant phenotypic differences among the cryptic species of Histoplasma and (ii) those differences can be used to positively distinguish those species in a clinical setting and for further study of the evolution of this fungal pathogen.IMPORTANCEIdentifying species boundaries is a critical component of evolutionary biology. Genome sequencing and the use of molecular markers have advanced our understanding of the evolutionary history of fungal pathogens, including Histoplasma, and have allowed for the identification of new species. This is especially important in organisms where morphological characteristics have not been detected. In this study, we revised the taxonomic status of the four named species of the genus Histoplasma, H. capsulatum sensu stricto (ss), H. ohiense, H. mississippiense, and H. suramericanum, and propose the use of species-specific phenotypic traits to aid their identification when genome sequencing is not available. These results have implications not only for evolutionary study of Histoplasma but also for clinicians, as the Histoplasma species could determine the outcome of disease and treatment needed.


Subject(s)
Histoplasma , Histoplasmosis , Phenotype , Phylogeny , Histoplasma/genetics , Histoplasma/classification , Histoplasma/pathogenicity , Histoplasma/isolation & purification , Histoplasmosis/microbiology , Humans , Genome, Fungal
3.
bioRxiv ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38260643

ABSTRACT

Histoplasmosis is an endemic mycosis that often presents as a respiratory infection in immunocompromised patients. Hundreds of thousands of new infections are reported annually around the world. The etiological agent of the disease, Histoplasma, is a dimorphic fungus commonly found in the soil where it grows as mycelia. Humans can become infected by Histoplasma through inhalation of its spores (conidia) or mycelial particles. The fungi transitions into the yeast phase in the lungs at 37°C. Once in the lungs, yeast cells reside and proliferate inside alveolar macrophages. We have previously described that Histoplasma is composed of at least five cryptic species that differ genetically, and assigned new names to the lineages. Here we evaluated multiple phenotypic characteristics of 12 strains from five phylogenetic species of Histoplasma to identify phenotypic traits that differentiate between these species: H. capsulatum sensu stricto, H. ohiense, H. mississippiense, H. suramericanum, and an African lineage. We report diagnostic traits for two species. The other three species can be identified by a combination of traits. Our results suggest that 1) there are significant phenotypic differences among the cryptic species of Histoplasma, and 2) that those differences can be used to positively distinguish those species in a clinical setting and for further study of the evolution of this fungal pathogen.

4.
Immunity ; 56(5): 998-1012.e8, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37116499

ABSTRACT

Cytosolic innate immune sensing is critical for protecting barrier tissues. NOD1 and NOD2 are cytosolic sensors of small peptidoglycan fragments (muropeptides) derived from the bacterial cell wall. These muropeptides enter cells, especially epithelial cells, through unclear mechanisms. We previously implicated SLC46 transporters in muropeptide transport in Drosophila immunity. Here, we focused on Slc46a2, which was highly expressed in mammalian epidermal keratinocytes, and showed that it was critical for the delivery of diaminopimelic acid (DAP)-muropeptides and activation of NOD1 in keratinocytes, whereas the related transporter Slc46a3 was critical for delivering the NOD2 ligand MDP to keratinocytes. In a mouse model, Slc46a2 and Nod1 deficiency strongly suppressed psoriatic inflammation, whereas methotrexate, a commonly used psoriasis therapeutic, inhibited Slc46a2-dependent transport of DAP-muropeptides. Collectively, these studies define SLC46A2 as a transporter of NOD1-activating muropeptides, with critical roles in the skin barrier, and identify this transporter as an important target for anti-inflammatory intervention.


Subject(s)
Dermatitis , Methotrexate , Mice , Animals , Methotrexate/pharmacology , Inflammation , Peptidoglycan/metabolism , Epithelial Cells/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Immunity, Innate , Mammals
5.
mBio ; 13(1): e0257421, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35089059

ABSTRACT

Histoplasma capsulatum, a dimorphic fungal pathogen, is the most common cause of fungal respiratory infections in immunocompetent hosts. Histoplasma is endemic in the Ohio and Mississippi River Valleys in the United States and is also distributed worldwide. Previous studies have revealed at least eight clades, each specific to a geographic location: North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B), Eurasian, Netherlands, Australian and African, and an additional distinct lineage (H81) comprised of Panamanian isolates. Previously assembled Histoplasma genomes are highly fragmented, with the highly repetitive G217B (NAm 2) strain, which has been used for most whole-genome-scale transcriptome studies, assembled into over 250 contigs. In this study, we set out to fully assemble the repeat regions and characterize the large-scale genome architecture of Histoplasma species. We resequenced five Histoplasma strains (WU24 [NAm 1], G217B [NAm 2], H88 [African], G186AR [Panama], and G184AR [Panama]) using Oxford Nanopore Technologies long-read sequencing technology. Here, we report chromosomal-level assemblies for all five strains, which exhibit extensive synteny among the geographically distant Histoplasma isolates. The new assemblies revealed that RYP2, a major regulator of morphology and virulence, is duplicated in G186AR. In addition, we mapped previously generated transcriptome data sets onto the newly assembled chromosomes. Our analyses revealed that the expression of transposons and transposon-embedded genes are upregulated in yeast phase compared to mycelial phase in the G217B and H88 strains. This study provides an important resource for fungal researchers and further highlights the importance of chromosomal-level assemblies in analyzing high-throughput data sets. IMPORTANCE Histoplasma species are dimorphic fungi causing significant morbidity and mortality worldwide. These fungi grow as mold in the soil and as budding yeast within the human host. Histoplasma can be isolated from soil in diverse regions, including North America, South America, Africa, and Europe. Phylogenetically distinct species of Histoplasma have been isolated and sequenced. However, for the commonly used strains, genome assemblies have been fragmented, leading to underutilization of genome-scale data. This study provides chromosome-level assemblies of the commonly used Histoplasma strains using long-read sequencing technology. Comparative analysis of these genomes shows largely conserved gene order within the chromosomes. Mapping existing transcriptome data on these new assemblies reveals clustering of transcriptionally coregulated genes. The results of this study highlight the importance of obtaining chromosome-level assemblies in understanding the biology of human fungal pathogens.


Subject(s)
Histoplasma , Mycoses , Humans , Synteny , Australia , Histoplasma/genetics , Saccharomyces cerevisiae/genetics , Chromosomes , Genome, Fungal
6.
mSphere ; 6(5): e0072221, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34612676

ABSTRACT

Fungal two-component regulatory systems incorporate receiver domains into hybrid histidine kinases (HHKs) and response regulators. We constructed a nonredundant database of 670 fungal receiver domain sequences from 51 species sampled from nine fungal phyla. A much greater proportion (21%) of predicted fungal response regulators did not belong to known groups than previously appreciated. Receiver domains in Rim15 response regulators from Ascomycota and other phyla are very different from one another, as are the duplicate receiver domains in group XII HHKs. Fungal receiver domains from five known types of response regulators and 20 known types of HHKs exhibit distinct patterns of amino acids at conserved and variable positions known to be structurally and functionally important in bacterial receiver domains. We inferred structure/activity relationships from the patterns and propose multiple experimentally testable hypotheses about the mechanisms of signal transduction mediated by fungal receiver domains.


Subject(s)
Fungal Proteins/metabolism , Fungi/metabolism , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungi/genetics , Histidine Kinase/genetics , Histidine Kinase/metabolism , Signal Transduction
7.
Trends Microbiol ; 29(10): 883-893, 2021 10.
Article in English | MEDLINE | ID: mdl-33853736

ABSTRACT

Bacterial two-component regulatory systems (TCSs) mediate signal transduction by transferring phosphoryl groups between sensor kinase and response regulator proteins, sometimes using intermediary histidine-phosphotransferase (Hpt) domains to form multistep phosphorelays. Because (i) almost all known fungal sensor kinases exhibit a domain architecture characteristic of bacterial TCS phosphorelays, (ii) all known fungal Hpts are stand-alone proteins suited to shuttle between cytoplasm and nucleus, and (iii) the best-characterized fungal TCS is a canonical phosphorelay, it is widely assumed that most or all fungal TCSs function via phosphorelays. However, fungi generally encode more sensor kinases than Hpts or response regulators, leading to a disparity between putative phosphorelay inputs and outputs. The simplest resolution of this paradox is to hypothesize that most fungal sensor kinases do not participate in phosphorelays. Reimagining how fungal TCSs might function leads to multiple testable predictions.


Subject(s)
Fungal Proteins/metabolism , Fungi/metabolism , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungi/genetics , Histidine Kinase/genetics , Histidine Kinase/metabolism , Signal Transduction
8.
Infect Immun ; 89(2)2021 01 19.
Article in English | MEDLINE | ID: mdl-33257531

ABSTRACT

Yersinia pestis is a highly virulent pathogen and the causative agent of bubonic, septicemic, and pneumonic plague. Primary pneumonic plague caused by inhalation of respiratory droplets contaminated with Y. pestis is nearly 100% lethal within 4 to 7 days without antibiotic intervention. Pneumonic plague progresses in two phases, beginning with extensive bacterial replication in the lung with minimal host responsiveness, followed by the abrupt onset of a lethal proinflammatory response. The precise mechanisms by which Y. pestis is able to colonize the lung and survive two very distinct disease phases remain largely unknown. To date, a few bacterial virulence factors, including the Ysc type 3 secretion system, are known to contribute to the pathogenesis of primary pneumonic plague. The bacterial GTPase BipA has been shown to regulate expression of virulence factors in a number of Gram-negative bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica serovar Typhi. However, the role of BipA in Y. pestis has yet to be investigated. Here, we show that BipA is a Y. pestis virulence factor that promotes defense against early neutrophil-mediated bacterial killing in the lung. This work identifies a novel Y. pestis virulence factor and highlights the importance of early bacterial/neutrophil interactions in the lung during primary pneumonic plague.


Subject(s)
Bacterial Proteins/physiology , GTP Phosphohydrolases/physiology , Plague/immunology , Plague/physiopathology , Virulence Factors/physiology , Yersinia pestis/immunology , Yersinia pestis/pathogenicity , Animals , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred C57BL , Models, Animal
10.
mSphere ; 5(4)2020 08 26.
Article in English | MEDLINE | ID: mdl-32848006

ABSTRACT

Histoplasma is an endemic dimorphic fungus that can cause disease in healthy and immunocompromised individuals after the transition of inhaled spores into the facultative intracellular yeast form. There is substantial diversity among Histoplasma species, but it is not clear how this heterogeneity impacts the progression of pathology and cellular immune responses during acute respiratory infection, which represents the vast majority of histoplasmosis disease burden. After inoculating mice intranasally with a sublethal inoculum, we characterized the immune response to Histoplasma capsulatum (strain G186A) and Histoplasma ohiense (strain G217B) using comprehensive flow cytometric and single-cell analyses. Within 8 days after inoculation, H. ohiense induced a significantly higher infiltration of neutrophils and inflammatory monocytes into the lung compared to H. capsulatum Microscopic analysis of infected lung tissue revealed that although the total number of fungi was similar within inflamed lung lesions, we observed different species-dependent intracellular yeast distribution patterns. Inoculation with gfp-expressing strains indicated that H. ohiense, but not H. capsulatum, was associated primarily with alveolar macrophages early after infection. Interestingly, we observed a significant reduction in the total number of alveolar macrophages 12 to 16 days after H. ohiense, but not H. capsulatum infection, despite similar intracellular growth dynamics within AMJ2-C11 alveolar macrophages in vitro Together, our data suggest that H. ohiense, but not H. capsulatum, preferentially interacts with alveolar macrophages early after infection, which may lead to a different course of inflammation and resolution despite similar rates of fungal clearance.IMPORTANCE Acute pulmonary histoplasmosis in healthy individuals comprises most of the disease burden caused by the fungal pathogen Histoplasma Fungal pneumonia is frequently delayed in diagnosis and treatment due to a prolonged period of quiescence early during infection. In this study, we used a murine respiratory model of histoplasmosis to investigate how different Histoplasma species modulate lung inflammation throughout the complete course of infection. We propose that a relatively low, sublethal inoculum is ideal to model acute pulmonary histoplasmosis in humans, primarily due to the quiescent stage of fungal growth that occurs in the lungs of mice prior to the initiation of inflammation. Our results reveal the unique course of lung immunity associated with divergent species of Histoplasma and imply that the progression of clinical disease is considerably more heterogeneous than previously recognized.


Subject(s)
Histoplasma/immunology , Histoplasma/pathogenicity , Lung/microbiology , Macrophages, Alveolar/microbiology , Pneumonia/microbiology , Animals , Disease Models, Animal , Flow Cytometry , Genetic Variation , Histoplasma/classification , Histoplasmosis/microbiology , Histoplasmosis/pathology , Lung/immunology , Lung/pathology , Male , Mice , Mice, Inbred C57BL
11.
mSphere ; 5(4)2020 08 05.
Article in English | MEDLINE | ID: mdl-32759339

ABSTRACT

Following inhalation, Yersinia pestis rapidly colonizes the lung to establish infection during primary pneumonic plague. Although several adhesins have been identified in Yersinia spp., the factors mediating early Y. pestis adherence in the lung remain unknown. To identify genes important for Y. pestis adherence during primary pneumonic plague, we used transposon insertion sequencing (Tn-seq). Wild-type and capsule mutant (Δcaf1) Y. pestis transposon mutant libraries were serially passaged in vivo to enrich for nonadherent mutants in the lung using a mouse model of primary pneumonic plague. Sequencing of the passaged libraries revealed six mutants that were significantly enriched in both the wild-type and Δcaf1Y. pestis backgrounds. The enriched mutants had insertions in genes that encode transcriptional regulators, chaperones, an endoribonuclease, and YPO3903, a hypothetical protein. Using single-strain infections and a transcriptional analysis, we identified a significant role for YPO3903 in Y. pestis adherence in the lung and showed that YPO3903 regulated transcript levels of psaA, which encodes a fimbria previously implicated in Y. pestis adherence in vitro Deletion of psaA had a minor effect on Y. pestis adherence in the lung, suggesting that YPO3903 regulates other adhesins in addition to psaA By enriching for mutations in genes that regulate the expression or assembly of multiple genes or proteins, we obtained screen results indicating that there may be not just one dominant adhesin but rather several factors that contribute to early Y. pestis adherence during primary pneumonic plague.IMPORTANCE Colonization of the lung by Yersinia pestis is a critical first step in establishing infection during primary pneumonic plague, a disease characterized by high lethality. However, the mechanisms by which Y. pestis adheres in the lung after inhalation remain elusive. Here, we used Tn-seq to identify Y. pestis genes important for adherence early during primary pneumonic plague. Our mutant enrichment strategy resulted in the identification of genes important for regulation and assembly of genes and proteins rather than adhesin genes themselves. These results reveal that there may be multiple Y. pestis adhesins or redundancy among adhesins. Identifying the adhesins regulated by the genes identified in our enrichment screen may reveal novel therapeutic targets for preventing Y. pestis adherence and the subsequent development of pneumonic plague.


Subject(s)
Bacterial Adhesion/genetics , Plague/microbiology , Yersinia pestis/genetics , Animals , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , DNA Transposable Elements/genetics , Disease Models, Animal , Female , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred C57BL , Mutation , Sequence Analysis, DNA , Virulence , Yersinia pestis/pathogenicity
12.
mBio ; 11(3)2020 05 26.
Article in English | MEDLINE | ID: mdl-32457244

ABSTRACT

Microbes live in complex microniches within host tissues, but how symbiotic partners communicate to create such niches during development remains largely unexplored. Using confocal microscopy and symbiont genetics, we characterized the shaping of host microenvironments during light organ colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri During embryogenesis, three pairs of invaginations form sequentially on the organ's surface, producing pores that lead to interior compressed tubules at different stages of development. After hatching, these areas expand, allowing V. fischeri cells to enter and migrate ∼120 µm through three anatomically distinct regions before reaching blind-ended crypt spaces. A dynamic gatekeeper, or bottleneck, connects these crypts with the migration path. Once V. fischeri cells have entered the crypts, the bottlenecks narrow, and colonization by the symbiont population becomes spatially restricted. The actual timing of constriction and restriction varies with crypt maturity and with different V. fischeri strains. Subsequently, starting with the first dawn following colonization, the bottleneck controls a lifelong cycle of dawn-triggered expulsions of most of the symbionts into the environment and a subsequent regrowth in the crypts. Unlike other developmental phenotypes, bottleneck constriction is not induced by known microbe-associated molecular patterns (MAMPs) or by V. fischeri-produced bioluminescence, but it does require metabolically active symbionts. Further, while symbionts in the most mature crypts have a higher proportion of live cells and a greater likelihood of expulsion at dawn, they have a lower resistance to antibiotics. The overall dynamics of these distinct microenvironments reflect the complexity of the host-symbiont dialogue.IMPORTANCE The complexity, inaccessibility, and time scales of initial colonization of most animal microbiomes present challenges for the characterization of how the bacterial symbionts influence the form and function of tissues in the minutes to hours following the initial interaction of the partners. Here, we use the naturally occurring binary squid-vibrio association to explore this phenomenon. Imaging of the spatiotemporal landscape of this symbiosis during its onset provides a window into the impact of differences in both host-tissue maturation and symbiont strain phenotypes on the establishment of a dynamically stable symbiotic system. These data provide evidence that the symbionts shape the host-tissue landscape and that tissue maturation impacts the influence of strain-level differences on the daily rhythms of the symbiosis, the competitiveness for colonization, and antibiotic sensitivity.


Subject(s)
Aliivibrio fischeri/physiology , Decapodiformes/microbiology , Symbiosis , Animals , Luminescent Proteins/metabolism , Phenotype
13.
Front Cell Infect Microbiol ; 10: 614994, 2020.
Article in English | MEDLINE | ID: mdl-33585281

ABSTRACT

Bordetella pertussis is a highly contagious pathogen which causes whooping cough in humans. A major pathophysiology of infection is the extrusion of ciliated cells and subsequent disruption of the respiratory mucosa. Tracheal cytotoxin (TCT) is the only virulence factor produced by B. pertussis that has been able to recapitulate this pathology in animal models. This pathophysiology is well characterized in a hamster tracheal model, but human data are lacking due to scarcity of donor material. We assessed the impact of TCT and lipopolysaccharide (LPS) on the functional integrity of the human airway mucosa by using in vitro airway mucosa models developed by co-culturing human tracheobronchial epithelial cells and human tracheobronchial fibroblasts on porcine small intestinal submucosa scaffold under airlift conditions. TCT and LPS either alone and in combination induced blebbing and necrosis of the ciliated epithelia. TCT and LPS induced loss of ciliated epithelial cells and hyper-mucus production which interfered with mucociliary clearance. In addition, the toxins had a disruptive effect on the tight junction organization, significantly reduced transepithelial electrical resistance and increased FITC-Dextran permeability after toxin incubation. In summary, the results indicate that TCT collaborates with LPS to induce the disruption of the human airway mucosa as reported for the hamster tracheal model.


Subject(s)
Bordetella pertussis , Whooping Cough , Animals , Cricetinae , Cytotoxins , Humans , Peptidoglycan , Swine , Virulence Factors, Bordetella
14.
mBio ; 10(6)2019 12 10.
Article in English | MEDLINE | ID: mdl-31822588

ABSTRACT

Inhalation of Yersinia pestis causes primary pneumonic plague, the most severe manifestation of plague that is characterized by a dramatic neutrophil influx to the lungs. Neutrophils are ineffective during primary pneumonic plague, failing to control Y. pestis growth in the airways. However, the mechanisms by which Y. pestis resists neutrophil killing are incompletely understood. Here, we show that Y. pestis inhibits neutrophil degranulation, an important line of host innate immune defense. We observed that neutrophils from the lungs of mice infected intranasally with Y. pestis fail to release primary granules throughout the course of disease. Using a type III secretion system (T3SS) injection reporter strain, we determined that Y. pestis directly inhibits neutrophil granule release by a T3SS-dependent mechanism. Combinatorial mutant analysis revealed that a Y. pestis strain lacking both effectors YopE and YopH did not inhibit primary granule release and is killed by neutrophils both in vivo and in vitro Similarly, Y. pestis strains injecting only YopE or YopH are able to inhibit the majority of primary granule release from human neutrophils. We determined that YopE and YopH block Rac2 activation and calcium flux, respectively, to inhibit neutrophil primary granule release in isolated human neutrophils. These results demonstrate that Y. pestis coordinates the inhibition of neutrophil primary granule release through the activities of two distinct effectors, and this inhibition promotes Y. pestis survival during primary pneumonic plague.IMPORTANCEYersinia pestis is the causative agent of plague and is one of the deadliest human pathogens. The pneumonic form of Y. pestis infection has played a critical role in the severity of both historical and modern plague outbreaks, yet the host-pathogen interactions that govern the lethality of Yersinia pestis pulmonary infections are incompletely understood. Here, we report that Yersinia pestis inhibits neutrophil degranulation during infection, rendering neutrophils ineffective and allowing unrestricted growth of Y. pestis in the lungs. This coordinated inhibition of granule release not only demonstrates the pathogenic benefit of "silencing" lung neutrophils but also reveals specific host processes and pathways that could be manipulated to reduce the severity of primary pneumonic plague.


Subject(s)
Lung/immunology , Lung/microbiology , Neutrophils/immunology , Plague/immunology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Yersinia pestis/immunology , Animals , Bacterial Proteins/immunology , Disease Models, Animal , Female , Host-Pathogen Interactions/immunology , Humans , Mice , Mice, Inbred C57BL
15.
Methods Mol Biol ; 2010: 197-209, 2019.
Article in English | MEDLINE | ID: mdl-31177440

ABSTRACT

Neutrophils are the primary immune cell recruited to the site of bacterial infection, where they can rapidly deploy vesicles filled with various pro-inflammatory and anti-microbial proteins. This degranulation process, combined with oxidative and nitrosative mechanisms, is a major part of the initial host response to kill microorganisms. Neutrophils are one of the main cell types that interact with Yersinia pestis during infection, which is often lethal in the absence of prompt antibiotic treatment. Intradermal inoculation of Y. pestis results in bubonic plague, and inhalation of aerosolized droplets containing Y. pestis results in pneumonic plague. Although neutrophils are recruited to the site of inoculation during both bubonic and pneumonic plague, the neutrophils fail to clear Y. pestis, and, during pneumonic plague, contribute to the development of severe pneumonia. Subverting neutrophil responses is critical to the development of fulminant disease, yet the mechanisms by which Y. pestis impairs neutrophils are poorly understood. Cell culture models are important tools for studying Y. pestis interactions with immune cells. We describe a cell culture model for the infection of human neutrophils with Y. pestis. Neutrophils are isolated from human peripheral blood at high purity and subsequently infected with Y. pestis. We specifically focus on the application of this in vitro infection assay to the analysis of neutrophil degranulation responses.


Subject(s)
Neutrophils/immunology , Plague/immunology , Yersinia pestis/immunology , Cell Degranulation , Cell Separation/methods , Flow Cytometry/methods , Humans , Lung/immunology , Lung/microbiology , Neutrophil Infiltration , Neutrophils/microbiology , Neutrophils/physiology , Plague/microbiology , Pneumonia/immunology , Pneumonia/microbiology
16.
Infect Immun ; 87(2)2019 02.
Article in English | MEDLINE | ID: mdl-30510103

ABSTRACT

Incidence of whooping cough (pertussis), a bacterial infection of the respiratory tract caused by the bacterium Bordetella pertussis, has reached levels not seen since the 1950s. Antibiotics fail to improve the course of disease unless administered early in infection. Therefore, there is an urgent need for the development of antipertussis therapeutics. Sphingosine-1-phosphate receptor (S1PR) agonists have been shown to reduce pulmonary inflammation during Bordetella pertussis infection in mouse models. However, the mechanisms by which S1PR agonists attenuate pertussis disease are unknown. We report the results of a transcriptome sequencing study examining pulmonary transcriptional responses in B. pertussis-infected mice treated with S1PR agonist AAL-R or vehicle control. This study identified peptidoglycan recognition protein 4 (PGLYRP4) as one of the most highly upregulated genes in the lungs of infected mice following S1PR agonism. PGLYRP4, a secreted, innate mediator of host defenses, was found to limit early inflammatory pathology in knockout mouse studies. Further, S1PR agonist AAL-R failed to attenuate pertussis disease in PGLYRP4 knockout (KO) mice. B. pertussis virulence factor tracheal cytotoxin (TCT), a secreted peptidoglycan breakdown product, induces host tissue damage. TCT-oversecreting strains were found to drive an early inflammatory response similar to that observed in PGLYRP4 KO mice. Further, TCT-oversecreting strains induced significantly greater pathology in PGLYRP4-deficient animals than their wild-type counterparts. Together, these data indicate that S1PR agonist-mediated protection against pertussis disease is PGLYRP4 dependent. Our data suggest PGLYRP4 functions, in part, by preventing TCT-induced airway damage.


Subject(s)
Bordetella pertussis/immunology , Carrier Proteins/metabolism , Receptors, Lysosphingolipid/agonists , Whooping Cough/immunology , Animals , Disease Models, Animal , Gene Expression Regulation, Bacterial/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
Evol Lett ; 2(3): 210-220, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30283677

ABSTRACT

Hybridization between species of pathogens has the potential to speed evolution of virulence by providing the raw material for adaptation through introgression or by assembling new combinations of virulence traits. Fungal diseases are a source high morbidity, and remain difficult to treat. Yet the frequency of hybridization between fungal species has rarely been explored, and the functional role of introgressed alleles remains largely unknown. Histoplasma mississippiense and H. ohiense are sympatric throughout their range in North America and have distinct virulence strategies, making them an ideal system to examine the role introgression may play in fungal pathogens. We identified introgressed tracts in the genomes of a sample of H. mississippiense and H. ohiense isolates. We found strong evidence in each species for recent admixture, but introgressed alleles were present at low frequencies, suggesting that they were deleterious. Consistent with this, coding and regulatory sequences were strongly depleted within introgressed regions, whereas intergenic regions were enriched, indicating that functional introgressed alleles were frequently deleterious in their new genomic context. Surprisingly, we found only two isolates with substantial admixture: the H. mississippiense and H. ohiense genomic reference strains, WU24 and G217B, respectively. Our results show that recent admixture has occurred, that it is frequently deleterious and that conclusions based on studies of the H. mississippiense and H. ohiense type strains should be revisited with more representative samples from the genus.

18.
mBio ; 8(6)2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29208741

ABSTRACT

Histoplasma capsulatum is a pathogenic fungus that causes life-threatening lung infections. About 500,000 people are exposed to H. capsulatum each year in the United States, and over 60% of the U.S. population has been exposed to the fungus at some point in their life. We performed genome-wide population genetics and phylogenetic analyses with 30 Histoplasma isolates representing four recognized areas where histoplasmosis is endemic and show that the Histoplasma genus is composed of at least four species that are genetically isolated and rarely interbreed. Therefore, we propose a taxonomic rearrangement of the genus.IMPORTANCE The evolutionary processes that give rise to new pathogen lineages are critical to our understanding of how they adapt to new environments and how frequently they exchange genes with each other. The fungal pathogen Histoplasma capsulatum provides opportunities to precisely test hypotheses about the origin of new genetic variation. We find that H. capsulatum is composed of at least four different cryptic species that differ genetically and also in virulence. These results have implications for the epidemiology of histoplasmosis because not all Histoplasma species are equivalent in their geographic range and ability to cause disease.


Subject(s)
Genetic Speciation , Genome, Fungal/genetics , Histoplasma/classification , Histoplasma/genetics , Phylogeny , Genetic Variation , Histoplasma/isolation & purification , Histoplasmosis/microbiology , Humans
19.
Cell Host Microbe ; 21(6): 719-730.e6, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28579255

ABSTRACT

Clearance of bacteria by macrophages involves internalization of the microorganisms into phagosomes, which are then delivered to endolysosomes for enzymatic degradation. These spatiotemporally segregated processes are not known to be functionally coupled. Here, we show that lysosomal degradation of bacteria sustains phagocytic uptake. In Drosophila and mammalian macrophages, lysosomal dysfunction due to loss of the endolysosomal Cl- transporter ClC-b/CLCN7 delayed degradation of internalized bacteria. Unexpectedly, defective lysosomal degradation of bacteria also attenuated further phagocytosis, resulting in elevated bacterial load. Exogenous application of bacterial peptidoglycans restored phagocytic uptake in the lysosomal degradation-defective mutants via a pathway requiring cytosolic pattern recognition receptors and NF-κB. Mammalian macrophages that are unable to degrade internalized bacteria also exhibit compromised NF-κB activation. Our findings reveal a role for phagolysosomal degradation in activating an evolutionarily conserved signaling cascade, which ensures that continuous uptake of bacteria is preceded by lysosomal degradation of microbes.


Subject(s)
Bacteria/immunology , Immunity, Innate/immunology , Lysosomes/metabolism , Macrophages/immunology , Macrophages/microbiology , Phagocytosis/physiology , Animals , Cytokines/metabolism , Drosophila/immunology , Escherichia coli/immunology , Escherichia coli/pathogenicity , Female , HEK293 Cells , Humans , Male , Mice , Mutation , NF-kappa B/metabolism , Phagosomes/metabolism , RAW 264.7 Cells , Signal Transduction/physiology
20.
J Immunol ; 199(1): 263-270, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28539433

ABSTRACT

Tracheal cytotoxin (TCT), a monomer of DAP-type peptidoglycan from Bordetella pertussis, causes cytopathology in the respiratory epithelia of mammals and robustly triggers the Drosophila Imd pathway. PGRP-LE, a cytosolic innate immune sensor in Drosophila, directly recognizes TCT and triggers the Imd pathway, yet the mechanisms by which TCT accesses the cytosol are poorly understood. In this study, we report that CG8046, a Drosophila SLC46 family transporter, is a novel transporter facilitating cytosolic recognition of TCT, and plays a crucial role in protecting flies against systemic Escherichia coli infection. In addition, mammalian SLC46A2s promote TCT-triggered NOD1 activation in human epithelial cell lines, indicating that SLC46As is a conserved group of peptidoglycan transporter contributing to cytosolic immune recognition.


Subject(s)
Cytosol/immunology , Drosophila Proteins/metabolism , Immunity, Innate , Peptidoglycan/immunology , Symporters/metabolism , Virulence Factors, Bordetella/immunology , Animals , Cell Line , Cell Wall/immunology , Cell Wall/metabolism , Cytosol/metabolism , Drosophila/immunology , Drosophila/microbiology , Escherichia coli/physiology , HEK293 Cells , Humans , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Signal Transduction , Virulence Factors, Bordetella/chemistry , Virulence Factors, Bordetella/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...