Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1251, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341437

ABSTRACT

Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.


Subject(s)
Biodiversity , Ecosystem , Biomass , Agriculture , Soil
2.
iScience ; 27(2): 108889, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38322986

ABSTRACT

Invasive earthworms colonize ecosystems around the globe. Compared to other species' invasions, earthworm invasions have received little attention. Previous studies indicated their tremendous effects on resident soil biota representing a major part of the terrestrial biodiversity. We investigated effects of earthworm invasion on soil microbial communities in three forests in North America by conducting DNA sequencing of soil bacteria, fungi, and protists in two soil depths. Our study shows that microbial diversity was lower in highly invaded forest areas. While bacterial diversity was strongly affected compared to fungi and protists, fungal community composition and family dominance were strongly affected compared to bacteria and protists. We found most species specialized on invasion in fungi, mainly represented by saprotrophs. Comparably, few protist species, mostly bacterivorous, were specialized on invasion. As one of the first observational studies, we investigated earthworm invasion on three kingdoms showing distinct taxa- and trophic level-specific responses to earthworm invasion.

3.
4.
Front Microbiol ; 13: 920618, 2022.
Article in English | MEDLINE | ID: mdl-35910637

ABSTRACT

Depending on their tree species composition, forests recruit different soil microbial communities. Likewise, the vertical nutrient gradient along soil profiles impacts these communities and their activities. In forest soils, bacteria and fungi commonly compete, coexist, and interact, which is challenging for understanding the complex mechanisms behind microbial structuring. Using amplicon sequencing, we analyzed bacterial and fungal diversity in relation to forest composition and soil depth. Moreover, employing random forest models, we identified microbial indicator taxa of forest plots composed of either deciduous or evergreen trees, or their mixtures, as well as of three soil depths. We expected that forest composition and soil depth affect bacterial and fungal diversity and community structure differently. Indeed, relative abundances of microbial communities changed more across soil depths than in relation to forest composition. The microbial Shannon diversity was particularly affected by soil depth and by the proportion of evergreen trees. Our results also reflected that bacterial communities are primarily shaped by soil depth, while fungi were influenced by forest tree species composition. An increasing proportion of evergreen trees did not provoke differences in main bacterial metabolic functions, e.g., carbon fixation, degradation, or photosynthesis. However, significant responses related to specialized bacterial metabolisms were detected. Saprotrophic, arbuscular mycorrhizal, and plant pathogenic fungi were related to the proportion of evergreen trees, particularly in topsoil. Prominent microbial indicator taxa in the deciduous forests were characterized to be r-strategists, whereas K-strategists dominated evergreen plots. Considering simultaneously forest composition and soil depth to unravel differences in microbial communities, metabolic pathways and functional guilds have the potential to enlighten mechanisms that maintain forest soil functionality and provide resistance against disturbances.

5.
Nat Commun ; 12(1): 4431, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290234

ABSTRACT

Experiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones. In the agricultural grasslands that we studied, management effects either overruled or modified the driving role of plant diversity observed in the biodiversity experiment. Nevertheless, we show that greater above- (plants) and belowground (mycorrhizal fungi) biodiversity contributed to tightening the P cycle in agricultural grasslands, as reduced management intensity and the associated increased biodiversity fostered the exploitation of P resources. Our results demonstrate that promoting a high above- and belowground biodiversity has ecological (biodiversity protection) and economical (fertiliser savings) benefits. Such win-win situations for farmers and biodiversity are crucial to convince farmers of the benefits of biodiversity and thus counteract global biodiversity loss.


Subject(s)
Agriculture/methods , Biodiversity , Grassland , Phosphorus/metabolism , Agriculture/economics , Biomass , Fertilizers/economics , Latent Class Analysis , Mycorrhizae/classification , Mycorrhizae/metabolism , Phosphorus/analysis , Phosphorus/economics , Plants/classification , Plants/metabolism , Plants/microbiology , Soil/chemistry , Soil Microbiology
6.
Nat Commun ; 12(1): 3918, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168127

ABSTRACT

Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


Subject(s)
Biodiversity , Ecosystem , Plants , Soil Microbiology , Agriculture , Animals , Europe , Food Chain , Forests , Grassland , Herbivory , Insecta
7.
Environ Microbiol ; 23(4): 2274-2292, 2021 04.
Article in English | MEDLINE | ID: mdl-33587815

ABSTRACT

Tree root-associated microbiomes are shaped by geographic, soil physico-chemical, and host tree parameters. However, their respective impacts on microbiome variations in soils across larger spatial scales remain weakly studied. We out-planted saplings of oak clone DF159 (Quercus robur L.) as phytometer in four grassland field sites along a European North-South transect. After four years, we first compared the soil microbiomes of the tree root zone (RZ) and the tree root-free zone (RFZ). Then, we separately considered the total microbiomes of both zones, besides the microbiome with significant affinity to the RZ and compared their variability along the transect. Variations within the microbiome of the tree RFZ were shaped by geographic and soil physico-chemical changes, whereby bacteria responded more than fungi. Variations within both microbiomes of the tree RZ depended on the host tree and abiotic parameters. Based on perMANOVA and Mantel correlation tests, impacts of site specificities and geographic distance strongly decreased for the tree RZ affine microbiome. This pattern was more pronounced for fungi than bacteria. Shaping the microbiome of the soil zones in root proximity might be a mechanism mediating the acclimation of oaks to a wide range of environmental conditions across geographic regions.


Subject(s)
Microbiota , Quercus , Fungi/genetics , Soil , Soil Microbiology , Trees
8.
Environ Microbiol ; 23(4): 1889-1906, 2021 04.
Article in English | MEDLINE | ID: mdl-32959469

ABSTRACT

Current studies show that multispecies forests are beneficial regarding biodiversity and ecosystem functionality. However, there are only little efforts to understand the ecological mechanisms behind these advantages of multispecies forests. Bacteria are among the key plant growth-promoting microorganisms that support tree growth and fitness. Thus, we investigated links between bacterial communities, their functionality and root trait dispersion within four major European forest types comprising multispecies and monospecific plots. Bacterial diversity revealed no major changes across the root functional dispersion gradient. In contrast, predicted gene profiles linked to plant growth activities suggest an increasing bacterial functionality from monospecific to multispecies forest. In multispecies forest plots, the bacterial functionality linked to plant growth activities declined with the increasing functional dispersion of the roots. Our findings indicate that enriched abundant bacterial operational taxonomic units are decoupled from bacterial functionality. We also found direct effects of tree species identity on bacterial community composition but no significant relations with root functional dispersion. Additionally, bacterial network analyses indicated that multispecies forests have a higher complexity in their bacterial communities, which points towards more stable forest systems with greater functionality. We identified a potential of root dispersion to facilitate bacterial interactions and consequently, plant growth activities.


Subject(s)
Ecosystem , Soil , Bacteria/genetics , Biodiversity , Trees
9.
ISME Commun ; 1(1): 40, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-37938639

ABSTRACT

Plant diversity and plant-related ecosystem functions have been important in biodiversity-ecosystem functioning studies. However, biotic interactions with mycorrhizal fungi have been understudied although they are crucial for plant-resource acquisition. Here, we investigated the effects of tree species richness and tree mycorrhizal type on arbuscular (AMF) and ectomycorrhizal fungal (EMF) communities. We aimed to understand how dissimilarities in taxa composition and beta-diversity are related to target trees and neighbours of the same or different mycorrhizal type. We sampled a tree diversity experiment with saplings (~7 years old), where tree species richness (monocultures, 2-species, and 4-species mixtures) and mycorrhizal type were manipulated. AMF and EMF richness significantly increased with increasing tree species richness. AMF richness of mixture plots resembled that of the sum of the respective monocultures, whereas EMF richness of mixture plots was lower compared to the sum of the respective monocultures. Specialisation scores revealed significantly more specialised AMF than EMF suggesting that, in contrast to previous studies, AMF were more specialised, whereas EMF were not. We further found that AMF communities were little driven by the surrounding trees, whereas EMF communities were. Our study revealed drivers of mycorrhizal fungal communities and further highlights the distinct strategies of AMF and EMF.

10.
Mol Ecol ; 30(2): 572-591, 2021 01.
Article in English | MEDLINE | ID: mdl-33226697

ABSTRACT

At the global scale, most forest research on biodiversity focuses on aboveground organisms. However, understanding the structural associations between aboveground and belowground communities provides relevant information about important functions linked to biogeochemical cycles. Microorganisms such as soil fungi are known to be closely coupled to the dominant tree vegetation, and we hypothesize that tree traits affect fungal guilds and soil functionality in multiple ways. By analysing fungal diversity of 64 plots from four European forest types using Illumina DNA sequencing, we show that soil fungal communities respond to tree community traits rather than to tree species diversity. To explain changes in fungal community structure and measured soil enzymatic activities, we used a trait-based ecological approach and community-weighted means of tree traits to define 'fast' (acquisitive) versus 'slow' (conservative) tree communities. We found specific tree trait effects on different soil fungal guilds and soil enzymatic activities: tree traits associated with litter and absorptive roots correlated with fungal, especially pathogen diversity, and influenced community composition of soil fungi. Relative abundance of the symbiotrophic and saprotrophic guilds mirrored the litter quality, while the root traits of fast tree communities enhanced symbiotrophic abundance. We found that forest types of higher latitudes, which are dominated by fast tree communities, correlated with high carbon-cycling enzymatic activities. In contrast, Mediterranean forests with slow tree communities showed high enzymatic activities related to nitrogen and phosphorous. Our findings highlight that tree trait effects of either 'fast' or 'slow' tree communities drive different fungal guilds and influence biogeochemical cycles.


Subject(s)
Soil , Trees , Forests , Fungi/genetics , Soil Microbiology , Trees/genetics
11.
Proc Natl Acad Sci U S A ; 117(45): 28140-28149, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33093203

ABSTRACT

Land-use intensification can increase provisioning ecosystem services, such as food and timber production, but it also drives changes in ecosystem functioning and biodiversity loss, which may ultimately compromise human wellbeing. To understand how changes in land-use intensity affect the relationships between biodiversity, ecosystem functions, and services, we built networks from correlations between the species richness of 16 trophic groups, 10 ecosystem functions, and 15 ecosystem services. We evaluated how the properties of these networks varied across land-use intensity gradients for 150 forests and 150 grasslands. Land-use intensity significantly affected network structure in both habitats. Changes in connectance were larger in forests, while changes in modularity and evenness were more evident in grasslands. Our results show that increasing land-use intensity leads to more homogeneous networks with less integration within modules in both habitats, driven by the belowground compartment in grasslands, while forest responses to land management were more complex. Land-use intensity strongly altered hub identity and module composition in both habitats, showing that the positive correlations of provisioning services with biodiversity and ecosystem functions found at low land-use intensity levels, decline at higher intensity levels. Our approach provides a comprehensive view of the relationships between multiple components of biodiversity, ecosystem functions, and ecosystem services and how they respond to land use. This can be used to identify overall changes in the ecosystem, to derive mechanistic hypotheses, and it can be readily applied to further global change drivers.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Models, Biological , Forests , Grassland
12.
Front Microbiol ; 11: 749, 2020.
Article in English | MEDLINE | ID: mdl-32390986

ABSTRACT

Tree roots attract their associated microbial partners from the local soil community. Accordingly, tree root-associated microbial communities are shaped by both the host tree and local environmental variables. To rationally compare the magnitude of environmental conditions and host tree impact, the "PhytOakmeter" project planted clonal oak saplings (Quercus robur L., clone DF159) as phytometers into different field sites that are within a close geographic space across the Central German lowland region. The PhytOakmeters were produced via micro-propagation to maintain their genetic identity. The current study analyzed the microbial communities in the PhytOakmeter root zone vs. the tree root-free zone of soil two years after out-planting the trees. Soil DNA was extracted, 16S and ITS2 genes were respectively amplified for bacteria and fungi, and sequenced using Illumina MiSeq technology. The obtained microbial communities were analyzed in relation to soil chemistry and weather data as environmental conditions, and the host tree growth. Although microbial diversity in soils of the tree root zone was similar among the field sites, the community structure was site-specific. Likewise, within respective sites, the microbial diversity between PhytOakmeter root and root-free zones was comparable. The number of microbial species exclusive to either zone, however, was higher in the host tree root zone than in the tree root-free zone. PhytOakmeter "core" and "site-specific" microbiomes were identified and attributed to the host tree selection effect and/or to the ambient conditions of the sites, respectively. The identified PhytOakmeter root zone-associated microbiome predominantly included ectomycorrhizal fungi, yeasts and saprotrophs. Soil pH, soil organic matter, and soil temperature were significantly correlated with the microbial diversity and/or community structure. Although the host tree contributed to shape the soil microbial communities, its effect was surpassed by the impact of environmental factors. The current study helps to understand site-specific microbe recruitment processes by young host trees.

13.
Microorganisms ; 8(2)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033191

ABSTRACT

The relationship between trees and root-associated fungal communities is complex. By specific root deposits and other signal cues, different tree species are able to attract divergent sets of fungal species. Plant intraspecific differences can lead to variable fungal patterns in the root's proximity. Therefore, within the Beech Transplant Experiment, we analyzed the impact of three different European beech ecotypes on the fungal communities in roots and the surrounding rhizosphere soil at two time points. Beech nuts were collected in three German sites in 2011. After one year, seedlings of the different progenies were out-planted on one site and eventually re-sampled in 2014 and 2017. We applied high-throughput sequencing of the fungal ITS2 to determine the correlation between tree progeny, a possible home-field advantage, plant development and root-associated fungal guilds under field conditions. Our result showed no effect of beech progeny on either fungal OTU richness or fungal community structure. However, over time the fungal OTU richness in roots increased and the fungal communities changed significantly, also in rhizosphere. In both plant compartments, the fungal communities displayed a high temporal turnover, indicating a permanent development and functional adaption of the root mycobiome of young beeches.

14.
Genes (Basel) ; 11(2)2020 01 30.
Article in English | MEDLINE | ID: mdl-32019196

ABSTRACT

Antibiotic-resistant pathogens claim the lives of thousands of people each year and are currently considered as one of the most serious threats to public health. Apart from clinical environments, soil ecosystems also represent a major source of antibiotic resistance determinants, which can potentially disseminate across distinct microbial habitats and be acquired by human pathogens via horizontal gene transfer. Therefore, it is of global importance to retrieve comprehensive information on environmental factors, contributing to an accumulation of antibiotic resistance genes and mobile genetic elements in these ecosystems. Here, medically relevant antibiotic resistance genes, class 1 integrons and IncP-1 plasmids were quantified via real time quantitative PCR in soils derived from temperate grasslands and forests, varying in land use over a large spatial scale. The generated dataset allowed an analysis, decoupled from regional influences, and enabled the identification of land use practices and soil characteristics elevating the abundance of antibiotic resistance genes and mobile genetic elements. In grassland soils, the abundance of the macrolide resistance gene mefA as well as the sulfonamide resistance gene sul2 was positively correlated with organic fertilization and the abundance of aac(6')-lb, conferring resistance to different aminoglycosides, increased with mowing frequency. With respect to forest soils, the beta-lactam resistance gene blaIMP-12 was significantly correlated with fungal diversity which might be due to the fact that different fungal species can produce beta-lactams. Furthermore, except blaIMP-5 and blaIMP-12, the analyzed antibiotic resistance genes as well as IncP-1 plasmids and class-1 integrons were detected less frequently in forest soils than in soils derived from grassland that are commonly in closer proximity to human activities.


Subject(s)
Bacteria/growth & development , Drug Resistance, Microbial , Fungi/growth & development , Integrons , Plasmids/genetics , Agriculture , Bacteria/genetics , Bacterial Proteins/genetics , Environmental Monitoring , Forests , Fungal Proteins/genetics , Fungi/genetics , Grassland , Macrolides/pharmacology , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Soil Microbiology
15.
Sci Rep ; 10(1): 919, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31969613

ABSTRACT

Plants are known to modulate their own rhizosphere mycobiome. However, field studies that use resident plants to relate the microbiome assemblage to environmental factors such as land-use suffer from the problem that confounding factors such as plant age and performance may override the targeted effects. In contrast, the use of even-aged phytometer plants pre-cultivated under uniform conditions helps to reduce such random variation. We investigated the rhizosphere mycobiomes of phytometer and resident plants of two common grassland species, Dactylis glomerata L. s. str. and Plantago lanceolata L. along a land-use intensity gradient using ITS rRNA Illumina amplicon sequencing. Remarkably, we did not detect effects of the plant types (resident vs. phytometer plant, even though some fungal taxa exhibited plant species specificity), indicating that phytometer plants hosted a comparable rhizosphere mycobiome as resident plants. Our data indicate that the plant species harbor distinct fungal communities, with fungal richness in the rhizosphere of P. lanceolata being substantially higher than that of D. glomerata. Land-use intensity had a clear impact on the mycobiome of both plant species, with specific fungal genera showing differential tolerance to high intensities. Overall, the phytometer approach has a high potential to reveal environmental impacts on rhizosphere communities.


Subject(s)
Dactylis/microbiology , Dactylis/physiology , Ecosystem , Environment , Grassland , Host Microbial Interactions/physiology , Mycobiome , Plantago/microbiology , Plantago/physiology , Rhizosphere , Soil Microbiology
16.
Environ Microbiol ; 22(3): 873-888, 2020 03.
Article in English | MEDLINE | ID: mdl-31087598

ABSTRACT

Soils provide a heterogeneous environment varying in space and time; consequently, the biodiversity of soil microorganisms also differs spatially and temporally. For soil microbes tightly associated with plant roots, such as arbuscular mycorrhizal fungi (AMF), the diversity of plant partners and seasonal variability in trophic exchanges between the symbionts introduce additional heterogeneity. To clarify the impact of such heterogeneity, we investigated spatiotemporal variation in AMF diversity on a plot scale (10 × 10 m) in a grassland managed at low intensity in southwest Germany. AMF diversity was determined using 18S rDNA pyrosequencing analysis of 360 soil samples taken at six time points within a year. We observed high AMF alpha- and beta-diversity across the plot and at all investigated time points. Relationships were detected between spatiotemporal variation in AMF OTU richness and plant species richness, root biomass, minimal changes in soil texture and pH. The plot was characterized by high AMF turnover rates with a positive spatiotemporal relationship for AMF beta-diversity. However, environmental variables explained only ≈20% of the variation in AMF communities. This indicates that the observed spatiotemporal richness and community variability of AMF was largely independent of the abiotic environment, but related to plant properties and the cooccurring microbiome.


Subject(s)
Biodiversity , Grassland , Mycorrhizae/physiology , Soil Microbiology , Biomass , Germany , Mycorrhizae/genetics , Plant Roots/microbiology , Plants/microbiology , RNA, Ribosomal, 18S/genetics , Seasons , Soil/chemistry
17.
Ecol Lett ; 22(1): 170-180, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30463104

ABSTRACT

While forest management strongly influences biodiversity, it remains unclear how the structural and compositional changes caused by management affect different community dimensions (e.g. richness, specialisation, abundance or completeness) and how this differs between taxa. We assessed the effects of nine forest features (representing stand structure, heterogeneity and tree composition) on thirteen above- and belowground trophic groups of plants, animals, fungi and bacteria in 150 temperate forest plots differing in their management type. Canopy cover decreased light resources, which increased community specialisation but reduced overall diversity and abundance. Features increasing resource types and diversifying microhabitats (admixing of oaks and conifers) were important and mostly affected richness. Belowground groups responded differently to those aboveground and had weaker responses to most forest features. Our results show that we need to consider forest features rather than broad management types and highlight the importance of considering several groups and community dimensions to better inform conservation.


Subject(s)
Biodiversity , Trees , Animals , Fungi
18.
Front Microbiol ; 9: 2711, 2018.
Article in English | MEDLINE | ID: mdl-30515138

ABSTRACT

The rhizosphere encompasses the soil surrounding the surface of plants' fine roots. Accordingly, the microbiome present is influenced by both soil type and plant species. Furthermore, soil microbial communities respond to land-use intensity due to the effects on soil conditions and plant performance. However, there is limited knowledge about the impact of grassland management practices under field conditions on the composition of both bacteria and fungi in the rhizosphere of different plant functional groups. In spring 2014 we planted four phytometer species, two forbs (Plantago lanceolata, Achillea millefolium) and two grasses (Dactylis glomerata, Arrhenatherum elatius) into 13 permanent experimental grassland plots, differing in management. After 6 months, rhizosphere and bulk soil associated with the phytometer plants were sampled, microbial genomic DNA was extracted and bacterial 16S and fungal ITS rDNA were sequenced using Illumina MiSeq. Our study revealed that the rhizosphere microbial community was more diverse than the bulk soil community. There were no differences in microbial community composition between the two plant functional groups, but a clear impact of root traits and edaphic conditions. Land-use intensity strongly affected plant productivity, neighboring plant richness and edaphic conditions, especially soil C/N ratio, which in turn had a strong influence on root traits and thereby explained to large extent microbial community composition. Rhizosphere microbes were mainly affected by abiotic factors, in particular by land-use intensity, while plant functional type had only subordinate effects. Our study provides novel insights into the assembly of rhizosphere bacterial and fungal communities in response to land-use intensity and plant functional groups in managed grassland ecosystems.

19.
Nat Commun ; 9(1): 4839, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30446752

ABSTRACT

Trade-offs and synergies in the supply of forest ecosystem services are common but the drivers of these relationships are poorly understood. To guide management that seeks to promote multiple services, we investigated the relationships between 12 stand-level forest attributes, including structure, composition, heterogeneity and plant diversity, plus 4 environmental factors, and proxies for 14 ecosystem services in 150 temperate forest plots. Our results show that forest attributes are the best predictors of most ecosystem services and are also good predictors of several synergies and trade-offs between services. Environmental factors also play an important role, mostly in combination with forest attributes. Our study suggests that managing forests to increase structural heterogeneity, maintain large trees, and canopy gaps would promote the supply of multiple ecosystem services. These results highlight the potential for forest management to encourage multifunctional forests and suggest that a coordinated landscape-scale strategy could help to mitigate trade-offs in human-dominated landscapes.


Subject(s)
Conservation of Natural Resources/methods , Forestry/methods , Forests , Trees/physiology , Ecosystem , Europe , Forestry/trends , Humans
20.
Front Microbiol ; 9: 2409, 2018.
Article in English | MEDLINE | ID: mdl-30364168

ABSTRACT

Environmental filtering (niche process) and dispersal limitation (neutral process) are two of the primary forces driving community assembly in ecosystems, but how these processes affect the Fagaceae-associated ectomycorrhizal (EM) fungal community at regional scales is so far poorly documented. We examined the EM fungal communities of 61 plant species in six genera belonging to the Fagaceae distributed across Chinese forest ecosystems (geographic distance up to ∼3,757 km) using Illumina Miseq sequencing of ITS2 sequences. The relative effects of environmental filtering (e.g., host plant phylogeny, soil and climate) and dispersal limitation (e.g., spatial distance) on the EM fungal community were distinguished using multiple models. In total, 2,706 operational taxonomic units (OTUs) of EM fungi, corresponding to 54 fungal lineages, were recovered at a 97% sequence similarity level. The EM fungal OTU richness was significantly affected by soil pH and nutrients and by host phylogeny. The EM fungal community composition was significantly influenced by combinations of host phylogeny, spatial distance, soil and climate. Furthermore, host phylogeny had the greatest effect on EM fungal community. The study suggests that the assembly of the EM fungal community is governed by both environmental filtering and dispersal limitation, with host effect being the most important determinant at the regional scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...