Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Folia Microbiol (Praha) ; 56(6): 519-25, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22083784

ABSTRACT

The glass beads cultivation system developed in our laboratory for physiological studies of filamentous microorganisms supports differentiation and allows complete recovery of bacterial colonies and their natural products from cultivation plates. Here, we used this system to study the global effect of ppk gene disruption in Streptomyces lividans. The ppk encoding the enzyme polyphosphate kinase (P) catalyses the reversible polymerisation of gamma phosphate of ATP to polyphosphates. The resulting are phosphate and energy stock polymers. Because P activity impacts the overall energetic state of the cell, it is also connected to secondary metabolite (e.g. antibiotic) biosynthesis. We analysed the global effects of the disruption of this gene including its influence on the production of pigmented antibiotics, on morphological differentiation, on the levels of ATP and on the whole cytoplasmic protein expression pattern of S. lividans. We observed that the S. lividans ppk mutant produced antibiotics earlier and in greater amount than the wild-type (wt) strain. On the other hand, we did not observe any obvious effect on colony morphological development. In agreement with the function of Ppk, we detected much lower levels of ATP in ppk- mutant than in the wt strain. Proteomic analysis revealed that the genes that were influenced by ppk inactivation included enzymes involved in carbon or nitrogen metabolism, phosphate transport and components of the cell translational machinery. We showed that the synthesis of translation elongation factor Tu is during sporulation much higher in ppk- mutant than in wild-type strain.


Subject(s)
Bacterial Proteins/genetics , Culture Techniques/methods , Gene Silencing , Phosphotransferases (Phosphate Group Acceptor)/genetics , Streptomyces lividans/enzymology , Streptomyces lividans/growth & development , Adenosine Triphosphate/biosynthesis , Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/metabolism , Culture Techniques/instrumentation , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Streptomyces lividans/genetics , Streptomyces lividans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...