Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 54(23): 8099-109, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-21999529

ABSTRACT

4-Aminothiazolyl analogues of the antibiotic natural product GE2270 A (1) were designed, synthesized, and optimized for their activity against Gram positive bacterial infections. Optimization efforts focused on improving the physicochemical properties (e.g., aqueous solubility and chemical stability) of the 4-aminothiazolyl natural product template while improving the in vitro and in vivo antibacterial activity. Structure-activity relationships were defined, and the solubility and efficacy profiles were improved over those of previous analogues and 1. These studies identified novel, potent, soluble, and efficacious elongation factor-Tu inhibitors, which bear cycloalkylcarboxylic acid side chains, and culminated in the selection of development candidates amide 48 and urethane 58.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Carboxylic Acids/chemical synthesis , Gram-Positive Bacterial Infections/drug therapy , Peptides, Cyclic/chemical synthesis , Thiazoles/chemical synthesis , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Area Under Curve , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Crystallography, X-Ray , Drug Resistance, Bacterial , Female , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/genetics , Male , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Mutation , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Rats , Rats, Sprague-Dawley , Sepsis/drug therapy , Solubility , Stereoisomerism , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology
2.
Antimicrob Agents Chemother ; 53(9): 3777-81, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19596876

ABSTRACT

LBM415 is an antibacterial agent belonging to the peptide deformylase inhibitor class of compounds. It has previously been shown to demonstrate good activity in vitro against a range of pathogens. In this study, the in vivo efficacy of LBM415 was evaluated in various mouse infection models. We investigated activity against a systemic infection model caused by intraperitoneal inoculation of Staphylococcus aureus (methicillin [meticillin] susceptible [MSSA] and methicillin resistant [MRSA]) and Streptococcus pneumoniae (penicillin susceptible [PSSP] and multidrug resistant [MDRSP]), a thigh infection model caused by intramuscular injection of MRSA, and a lung infection produced by intranasal inoculation of PSSP. In the systemic MSSA and MRSA infections, LBM415 was equivalent to linezolid and vancomycin. In the systemic PSSP infection, LBM415 was equivalent to linezolid, whereas against systemic MDRSP infection, the LBM415 50% effective dose (ED50) was 4.8 mg/kg (dosed subcutaneously) and 36.6 mg/kg (dosed orally), compared to 13.2 mg/kg for telithromycin and >60 mg/kg for penicillin V and clarithromycin. In the MRSA thigh infection, LBM415 significantly reduced thigh bacterial levels compared to those of untreated mice, with levels similar to those after treatment with linezolid at the same dose levels. In the pneumonia model, the ED50 to reduce the bacterial lung burden by >4 log10 in 50% of treated animals was 23.3 mg/kg for LBM415, whereas moxifloxacin showed an ED50 of 14.3 mg/kg. In summary, LBM415 showed in vivo efficacy in sepsis and specific organ infection models irrespective of resistance to other antibiotics. Results suggest the potential of peptide deformylase inhibitors as a novel class of therapeutic agents against antibiotic-resistant pathogens.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Peptides/pharmacology , Peptides/therapeutic use , Pneumonia/drug therapy , Staphylococcus aureus/drug effects , Acetamides/pharmacokinetics , Acetamides/pharmacology , Acetamides/therapeutic use , Animals , Anti-Infective Agents/pharmacokinetics , Female , Linezolid , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Structure , Oxazolidinones/pharmacokinetics , Oxazolidinones/pharmacology , Oxazolidinones/therapeutic use , Peptides/pharmacokinetics , Pneumonia/microbiology , Streptococcus pneumoniae/drug effects , Thigh/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...