Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 236: 250-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26025538

ABSTRACT

A combined strategy of phosphate (Pi) remobilization from internal and external RNA sources seems to be conserved in plants exposed to Pi starvation. Thus far, the only ribonucleases (RNases) reported to be induced in Nicotiana alata undergoing Pi deprivation are extracellular S-like RNase NE and NnSR1. NnSR1 is a class III non S-RNase of unknown subcellular location. Here, we examine the hypothesis that NnSR1 is an intracellular RNase derived from the self-incompatibility system with specific expression in self-incompatible Nicotiana alata. NnSR1 was not induced in self-compatible Nicotiana species exposed to Pi deprivation. NnSR1 conjugated with a fluorescent protein and transiently expressed in Arabidopsis protoplasts and Nicotiana leaves showed that the fusion protein co-localized with an endoplasmic reticulum (ER) marker. Subcellular fractionation by ultracentrifugation of roots exposed to Pi deprivation revealed that the native NnSR1 migrated in parallel with the BiP protein, a typical ER marker. To our knowledge, NnSR1 is the first class III RNase reported to be localized in ER compartments. The induction of NnSR1 was detected earlier than the extracellular RNase NE, suggesting that intracellular RNA may be the first source of Pi used by the cell under Pi stress.


Subject(s)
Gene Expression Regulation, Plant , Nicotiana/genetics , Plant Proteins/genetics , Ribonucleases/genetics , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Endoplasmic Reticulum/metabolism , Molecular Sequence Data , Phosphates/deficiency , Phylogeny , Plant Leaves/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protoplasts/metabolism , Ribonucleases/chemistry , Ribonucleases/metabolism , Sequence Alignment , Nicotiana/enzymology
2.
Protoplasma ; 252(1): 63-75, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24841893

ABSTRACT

In the S-RNase-based self-incompatibility system, subcellular events occurring in the apical region of incompatible pollen tubes during the pollen rejection process are poorly understood. F-actin dynamics and endomembrane trafficking are crucial for polar growth, which is temporally and spatially controlled in the tip region of pollen tubes. Thus, we developed a simple in vitro assay to study the changes in the F-actin cytoskeleton and the endomembrane system at the apical region of incompatible pollen tubes in Nicotiana alata. Growth but not germination of pollen tubes of S c10-, S70-, and S75-haplotypes was selectively inhibited by style extracts carrying the same haplotypes. Pollen F-actin cytoskeleton and endomembrane system, visualized by fluorescent markers, were normal during the initial 60 min of pollen culture in the presence of compatible and incompatible style extracts. Additional culture resulted in complete growth arrest and critical alterations in the integrity of the F-actin cytoskeleton and the endomembrane system of incompatible pollen tubes. The F-actin ring and the V-shaped zone disappeared from the apical region, while distorted F-actin cables and progressive formation of membrane aggregates evolved in the subapical region and the shank. The vacuolar network of incompatible pollen tubes invaded the tip region, but vacuolar membrane integrity remained mostly unaffected. The polar growth machinery of incompatible pollen tubes was uncoupled, as evidenced by the severe disruption of colocalization between the F-actin cytoskeleton and the endomembrane compartments. A model of pollen rejection integrating the main subcellular events occurring in incompatible pollen is discussed.


Subject(s)
Plant Proteins/metabolism , Pollen Tube/metabolism , Pollen/metabolism , Actin Cytoskeleton/metabolism , Cell Movement , Cytoskeleton/metabolism , Gene Expression Regulation, Plant , In Vitro Techniques , Plant Proteins/genetics , Pollen/physiology , Pollen Tube/physiology
3.
Ann Bot ; 112(7): 1351-60, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24047716

ABSTRACT

BACKGROUND AND AIMS: Non-S-ribonucleases (non-S-RNases) are class III T2 RNases constitutively expressed in styles of species with S-RNase-based self-incompatibility. So far, no function has been attributed to these RNases. The aim of this work is to examine if NnSR1, a non-S-RNase from Nicotiana alata, is induced under conditions of phosphate (Pi) deprivation. The hypothesis is that under Pi-limited conditions, non-S-RNase functions may resemble the role of S-like RNases. To date, the only RNases reported to be induced by Pi deficiency are class I and class II S-like RNases, which are phylogenetically different from the class III clade of RNases. METHODS: Gene and protein expression of NnSR1 were assayed in plants grown hydroponically with and without Pi, by combining RT-PCR, immunoblot and enzymatic activity approaches. KEY RESULTS: NnSR1 transcripts were detected in roots 7 d after Pi deprivation and remained stable for several days. Transcript expression was correlated based on Pi availability in the culture medium. Antiserum against a peptide based on a hypervariable domain of NnSR1 recognized NnSR1 in roots and stems but not leaves exposed to Pi shortage. NnSR1 was not detected in culture medium and was pelleted with the microsomal fraction, suggesting that it was membrane-associated or included in large compartments. The anti-NnSR1 inhibited selectively the enzymatic activity of a 31-kDa RNase indicating that NnSR1 was induced in an enzymatically active form. CONCLUSIONS: The induction of NnSR1 indicates that there is a general recruitment of all classes of T2 RNases in response to Pi shortage. NnSR1 appears to have regained ancestral functions of class III RNases related to strategies to cope with Pi limitation and also possibly with other environmental challenges. This constitutes the first report for a specific function of class III RNases other than S-RNases.


Subject(s)
Endoribonucleases/metabolism , Flowers/enzymology , Nicotiana/enzymology , Phosphates/deficiency , Plant Proteins/metabolism , Plant Roots/enzymology , Plant Stems/enzymology , Endoribonucleases/genetics , Flowers/drug effects , Gene Expression Regulation, Plant/drug effects , Organ Specificity/drug effects , Phosphates/pharmacology , Plant Proteins/genetics , Plant Roots/drug effects , Plant Stems/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nicotiana/drug effects , Transcription, Genetic/drug effects
4.
Plant Signal Behav ; 7(12): 1695-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23072996

ABSTRACT

Self-incompatibility (SI) systems appeared early in plant evolution as an effective mechanism to promote outcrossing and avoid inbreeding depression. These systems prevent self-fertilization by the recognition and rejection of self-pollen and pollen from closely related individuals. The most widespread SI system is based on the action of a pistil ribonuclease, the S-RNase, which recognizes and rejects incompatible pollen. S-RNases are endocyted by pollen tubes and stored into vacuoles. By a mechanism that is still unknown, these vacuoles are selectively disrupted in incompatible pollen, releasing S-RNases into the cytoplasm and allowing degradation of pollen RNA. Recently, we have studied the timing of in vivo alterations of pollen F-actin cytoskeleton after incompatible pollinations. Besides being essential for pollen growth, F-actin cytoskeleton is a very dynamic cellular component. Changes in F-actin organization are known to be capable of transducing signaling events in many cellular processes. Early after pollination, F-actin showed a progressive disorganization in incompatible pollen tubes. However by the time the F-actin was almost completely disrupted, the large majority of vacuolar compartments were still intact. These results indicate that in incompatible pollen tubes F-actin disorganization precedes vacuolar disruption. They also suggest that F-actin may act as an early transducer of signals triggering the rejection of incompatible pollen.


Subject(s)
Actins/metabolism , Nicotiana/metabolism , Pollen Tube/metabolism , Vacuoles/metabolism , Pollen/metabolism , Pollen/physiology , Pollen Tube/physiology , Nicotiana/physiology
5.
Ann Bot ; 110(4): 787-95, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22782242

ABSTRACT

BACKGROUND AND AIMS: The integrity of actin filaments (F-actin) is essential for pollen-tube growth. In S-RNase-based self-incompatibility (SI), incompatible pollen tubes are inhibited in the style. Consequently, research efforts have focused on the alterations of pollen F-actin cytoskeleton during the SI response. However, so far, these studies were carried out in in vitro-grown pollen tubes. This study aimed to assess the timing of in vivo changes of pollen F-actin cytoskeleton taking place after compatible and incompatible pollinations in Nicotiana alata. To our knowledge, this is the first report of the in vivo F-actin alterations occurring during pollen rejection in the S-RNase-based SI system. METHODS: The F-actin cytoskeleton and the vacuolar endomembrane system were fluorescently labelled in compatibly and incompatibly pollinated pistils at different times after pollination. The alterations induced by the SI reaction in pollen tubes were visualized by confocal laser scanning microscopy. KEY RESULTS: Early after pollination, about 70 % of both compatible and incompatible pollen tubes showed an organized pattern of F-actin cables along the main axis of the cell. While in compatible pollinations this percentage was unchanged until pollen tubes reached the ovary, pollen tubes of incompatible pollinations underwent gradual and progressive F-actin disorganization. Colocalization of the F-actin cytoskeleton and the vacuolar endomembrane system, where S-RNases are compartmentalized, revealed that by day 6 after incompatible pollination, when the pollen-tube growth was already arrested, about 80 % of pollen tubes showed disrupted F-actin but a similar percentage had intact vacuolar compartments. CONCLUSIONS: The results indicate that during the SI response in Nicotiana, disruption of the F-actin cytoskeleton precedes vacuolar membrane breakdown. Thus, incompatible pollen tubes undergo a sequential disorganization process of major subcellular structures. Results also suggest that the large pool of S-RNases released from vacuoles acts late in pollen rejection, after significant subcellular changes in incompatible pollen tubes.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Nicotiana/physiology , Pollen Tube/growth & development , Ribonucleases/metabolism , Self-Incompatibility in Flowering Plants/physiology , Microscopy, Confocal , Microscopy, Fluorescence , Plant Proteins/metabolism , Pollination , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/ultrastructure , Vacuoles/enzymology
6.
Plant Cell Rep ; 29(7): 735-46, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20443007

ABSTRACT

Self-incompatibility in the Solanaceae is mediated by S-RNase alleles expressed in the style, which confer specificity for pollen recognition. Nicotiana alata has been successfully used as an experimental model to elucidate cellular and molecular aspects of S-RNase-based self-incompatibility in Solanaceae. However, S-RNase alleles of this species have not been surveyed from natural populations and consequently the S-haplotype diversity is poorly known. Here the molecular and functional characterization of seven S-RNase candidate sequences, identified from a natural population of N. alata, are reported. Six of these candidates, S ( 5 ), S ( 27 ), S ( 70 ), S ( 75 ), S ( 107 ), and S ( 210 ), showed plant-specific amplification in the natural population and style-specific expression, which increased gradually during bud maturation, consistent with the reported S-RNase expression. In contrast, the S ( 63 ) ribonuclease was present in all plants examined and was ubiquitously expressed in different organs and bud developmental stages. Genetic segregation analysis demonstrated that S ( 27 ), S ( 70 ), S ( 75 ), S ( 107 ), and S ( 210 ) alleles were fully functional novel S-RNases, while S ( 5 ) and S ( 63 ) resulted to be non-S-RNases, although with a clearly distinct pattern of expression. These results reveal the importance of performing functional analysis in studies of S-RNase allelic diversity. Comparative phylogenetic analysis of six species of Solanaceae showed that N. alata S-RNases were included in eight transgeneric S-lineages. Phylogenetic pattern obtained from the inclusion of the novel S-RNase alleles confirms that N. alata represents a broad sample of the allelic variation at the S-locus of the Solanaceae.


Subject(s)
Gene Expression Regulation, Enzymologic/genetics , Gene Expression Regulation, Plant/genetics , Nicotiana/enzymology , Nicotiana/genetics , Ribonucleases/genetics , Self-Fertilization , Alleles , Gene Expression Regulation, Developmental/genetics , Genetic Variation/genetics , Haplotypes/genetics , Plant Structures/enzymology , Plant Structures/genetics , Plant Structures/growth & development , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , RNA, Plant/genetics , RNA, Plant/metabolism , Ribonucleases/metabolism , Solanaceae/enzymology , Solanaceae/genetics , Nicotiana/growth & development
7.
Nature ; 439(7078): 805-10, 2006 Feb 16.
Article in English | MEDLINE | ID: mdl-16482149

ABSTRACT

Pollen-pistil interactions are crucial for controlling plant mating. For example, S-RNase-based self-incompatibility prevents inbreeding in diverse angiosperm species. S-RNases are thought to function as specific cytotoxins that inhibit pollen that has an S-haplotype that matches one of those in the pistil. Thus, pollen and pistil factors interact to prevent mating between closely related individuals. Other pistil factors, such as HT-B, 4936-factor and the 120 kDa glycoprotein, are also required for pollen rejection but do not contribute to S-haplotype-specificity per se. Here we show that S-RNase is taken up and sorted to a vacuolar compartment in the pollen tubes. Antibodies to the 120 kDa glycoprotein label the compartment membrane. When the pistil does not express HT-B or 4936-factor, S-RNase remains sequestered, unable to cause rejection. Similarly, in wild-type pistils, compatible pollen tubes degrade HT-B and sequester S-RNase. We suggest that S-RNase trafficking and the stability of HT-B are central to S-specific pollen rejection.


Subject(s)
Nicotiana/enzymology , Nicotiana/physiology , Protein Processing, Post-Translational , Ribonucleases/metabolism , Antibodies/analysis , Antibodies/immunology , Biological Factors/metabolism , Enzyme Stability , Glycoproteins/chemistry , Glycoproteins/metabolism , Haplotypes , Inbreeding , Models, Biological , Plant Proteins/immunology , Plant Proteins/metabolism , Pollen/genetics , Pollen/physiology , Protein Transport , Reproduction/physiology , Species Specificity , Substrate Specificity , Time Factors , Nicotiana/anatomy & histology , Nicotiana/genetics , Vacuoles/enzymology
8.
Plant Physiol ; 132(4): 1801-10, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12913138

ABSTRACT

Soybean (Glycine max [L.] Merrill) mutant aj6 carries a single recessive lesion, aj6, that eliminates ubiquitous urease activity in leaves and callus while retaining normal embryo-specific urease activity. Consistently, aj6/aj6 plants accumulated urea in leaves. In crosses of aj6/aj6 by urease mutants at the Eu1, Eu2, and Eu3 loci, F(1) individuals exhibited wild-type leaf urease activity, and the F(2) segregated urease-negative individuals, demonstrating that aj6 is not an allele at these loci. F(2) of aj6/aj6 crossed with a null mutant lacking the Eu1-encoded embryo-specific urease showed that ubiquitous urease was also inactive in seeds of aj6/aj6. The cross of aj6/aj6 to eu4/eu4, a mutant previously assigned to the ubiquitous urease structural gene (R.S. Torisky, J.D. Griffin, R.L. Yenofsky, J.C. Polacco [1994] Mol Gen Genet 242: 404-414), yielded an F(1) having 22% +/- 11% of wild-type leaf urease activity. Coding sequences for ubiquitous urease were cloned by reverse transcriptase-polymerase chain reaction from wild-type, aj6/aj6, and eu4/eu4 leaf RNA. The ubiquitous urease had an 837-amino acid open reading frame (ORF), 87% identical to the embryo-specific urease. The aj6/aj6 ORF showed an R201C change that cosegregated with the lack of leaf urease activity in a cross against a urease-positive line, whereas the eu4/eu4 ORF showed a G468E change. Heteroallelic interaction in F(2) progeny of aj6/aj6 x eu4/eu4 resulted in partially restored leaf urease activity. These results confirm that aj6/aj6 and eu4/eu4 are mutants affected in the ubiquitous urease structural gene. They also indicate that radical amino acid changes in distinct domains can be partially compensated in the urease heterotrimer.


Subject(s)
Alleles , Genetic Complementation Test , Glycine max/enzymology , Glycine max/genetics , Urease/genetics , Urease/metabolism , Amino Acid Sequence , Enterobacter aerogenes/enzymology , Models, Molecular , Molecular Sequence Data , Mutation/genetics , Plant Leaves/enzymology , Plant Leaves/genetics , Protein Conformation , Sequence Alignment , Urea/metabolism , Urease/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...