Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 360(1794): 939-52, 2002 May 15.
Article in English | MEDLINE | ID: mdl-12804287

ABSTRACT

A high-magnification moiré interferometer has been constructed with a spatial resolution of the order of 1 microm to measure the local in-plane displacement field associated with a material's microstructure. Laser illumination passes through phase-stepping optics and is delivered to the microscope head by polarization-preserving single-mode optical fibres. The head itself is a compact unit consisting of collimating optics, an objective lens and a charge coupled device (CCD) camera. Thin-phase gratings are cast onto the sample surface with a compliant epoxy resin and coated with ca. 5 nm of gold to enhance the fringe contrast and reduce speckle noise. By switching between the laser illumination and white-light illumination, the underlying microstructure is viewed in exact registration with the measured displacement fields. The application of the instrument is illustrated here by visualization of displacement fields in polymer-bonded explosives (PBXs) during deformation to failure. PBXs are highly filled polymers consisting of up to 95% by weight crystalline explosive bound in a variety of polymeric binders. The mechanical properties of PBXs are highly dependent on the microstructure, and moiré interferometry is an ideal tool for investigating the relationship between the 1-100 microm sized crystals and the displacement fields. Methods such as this are required if computer models of inhomogeneous materials are to be accurately validated.


Subject(s)
Azocines/chemistry , Crystallography/methods , Heterocyclic Compounds, 1-Ring/chemistry , Materials Testing/instrumentation , Moire Topography/instrumentation , Motion , Elasticity , Equipment Design , Feasibility Studies , Interferometry/instrumentation , Interferometry/methods , Materials Testing/methods , Moire Topography/methods , Quality Control , Stress, Mechanical , Tensile Strength
2.
Appl Opt ; 38(19): 4030-6, 1999 Jul 01.
Article in English | MEDLINE | ID: mdl-18323879

ABSTRACT

A technique to measure two-dimensional deformation fields of a layer inside materials during dynamic events such as impact experiments is presented. Even optically opaque materials like cement can be evaluated when flash x rays are used. Blocks of polyester and cement were prepared with a layer of x-ray-absorbing lead particles. The specimens were then hit by a 9-mm-diameter steel sphere (ball bearing) fired from a 9-mm-bore gas gun at a velocity of 373.5 +/- 3.0 ms(-1). A 30-ns-long x-ray pulse exposed one radiograph before impact; another radiograph was exposed a short time after the impact on the specimen. The two-dimensional displacement field was obtained when the x-ray radiographs were digitized by a conventional flatbed scanner, and a digital speckle photography algorithm was used to calculate the displacements. The flash x-ray technique allowed examination of the deformation at the layer inside the material during failure, thus giving interesting data about the material flow field around the impactor.

3.
Appl Opt ; 38(28): 5956-61, 1999 Oct 01.
Article in English | MEDLINE | ID: mdl-18324114

ABSTRACT

A metrology system is presented that measures internal three-dimensional (3-D) displacement fields. The system uses a stereo pair of flash x-ray heads and correlation analysis to measure the true deformation of a layer of x-ray-absorbent particles inside the specimen. The 3-D deformation field inside blocks of polyester was determined. The polyester blocks were impacted by a 9-mm steel ball bearing fired from a 9-mm-bore gas gun at a speed of 373.5 +/- 3.0 m s(-1). At a given time after impact, a short-duration (30 ns) flash x-ray pulse exposes the x-ray radiographs and freezes the events during impact. Thereafter, the x-ray radiographs are scanned into a personal computer and analyzed as in digital speckle photography.

4.
Appl Opt ; 34(5): 781-9, 1995 Feb 10.
Article in English | MEDLINE | ID: mdl-21037595

ABSTRACT

An algorithm for unwrapping noisy phase maps has recently been proposed, based on the identification of discontinuity sources that mark the start or end of a 2π phase discontinuity. Branch cuts between sources act as barriers to unwrapping, resulting in a unique phase map that is independent of the unwrapping route. We investigate four methods for optimizing the placement of the cuts. A modified nearest neighbor approach is found to be the most successful and can reliably unwrap unfiltered speckle-interferometry phase maps with discontinuity source densities of 0.05 sources pixel(-1).

5.
Appl Opt ; 32(17): 3152-5, 1993 Jun 10.
Article in English | MEDLINE | ID: mdl-20829929

ABSTRACT

An automated system has been constructed to process double-exposure speckle-photography and particle-image-velocimetry images. A 3 × 3 array of laser beams probes the photograph, forming nine fringe patterns in parallel; these are then analyzed sequentially by digital computer and the use of a two-dimensional Fourier-transform method. Results are presented showing that the random errors in the measured displacements from such a system approach the expected speckle-noise-limited performance, with a total analysis time per displacement vector of 160 ms.

SELECTION OF CITATIONS
SEARCH DETAIL
...