Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 21814, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311584

ABSTRACT

Neurons of the medial olivary complex inhibit cochlear hair cells through the activation of α9α10-containing nicotinic acetylcholine receptors (nAChRs). Efforts to study the localization of these proteins have been hampered by the absence of reliable antibodies. To overcome this obstacle, CRISPR-Cas9 gene editing was used to generate mice in which a hemagglutinin tag (HA) was attached to the C-terminus of either α9 or α10 proteins. Immunodetection of the HA tag on either subunit in the organ of Corti of adult mice revealed immunopuncta clustered at the synaptic pole of outer hair cells. These puncta were juxtaposed to immunolabeled presynaptic efferent terminals. HA immunopuncta also occurred in inner hair cells of pre-hearing (P7) but not in adult mice. These immunolabeling patterns were similar for both homozygous and heterozygous mice. All HA-tagged genotypes had auditory brainstem responses not significantly different from those of wild type littermates. The activation of efferent neurons in heterozygous mice evoked biphasic postsynaptic currents not significantly different from those of wild type hair cells. However, efferent synaptic responses were significantly smaller and less frequent in the homozygous mice. We show that HA-tagged nAChRs introduced in the mouse by a CRISPR knock-in are regulated and expressed like the native protein, and in the heterozygous condition mediate normal synaptic function. The animals thus generated have clear advantages for localization studies.


Subject(s)
Hair Cells, Auditory, Outer/metabolism , Receptors, Nicotinic/biosynthesis , Animals , CRISPR-Cas Systems , Female , Gene Editing , Hair Cells, Auditory, Outer/cytology , Male , Mice , Mice, Knockout , Receptors, Nicotinic/genetics
2.
J Physiol ; 597(24): 5949-5961, 2019 12.
Article in English | MEDLINE | ID: mdl-31633194

ABSTRACT

KEY POINTS: Hair cell mechanoelectrical transducer channels are opened by deflections of the hair bundle about a resting position set by incompletely understood adaptation mechanisms. We used three characteristics to define adaptation in hair cell mutants of transmembrane channel-like proteins, TMC1 and TMC2, which are considered to be channel constituents. The results obtained demonstrate that the three characteristics are not equivalent, and raise doubts about simple models in which intracellular Ca2+ regulates adaptation. Adaptation is faster and more effective in TMC1-containing than in TMC2-containing transducer channels. This result ties adaptation to the channel complex, and suggests that TMC1 is a better isoform for use in cochlear hair cells. We describe a TMC1 point mutation, D569N, that reduces the resting open probability and Ca2+ permeability of the transducer channels, comprising properties that may contribute to the deafness phenotype. ABSTRACT: Recordings of mechanoelectrical transducer (MET) currents in cochlear hair cells were made in mice with mutations of transmembrane channel-like (TMC) protein to examine the effects on fast transducer adaptation. Adaptation was faster and more complete in Tmc2-/- than in Tmc1-/- , although this disparity was not explained by differences in Ca2+ permeability or Ca2+ influx between the two isoforms, with TMC2 having the larger permeability. We made a mouse mutation, Tmc1 p.D569N, homologous to a human DFNA36 deafness mutation, which also had MET channels with lower Ca2+ -permeability but showed better fast adaptation than wild-type Tmc1+/+ channels. Consistent with the more effective adaptation in Tmc1 p.D569N, the resting probability of MET channel opening was smaller. The three TMC variants studied have comparable single-channel conductances, although the lack of correlation between channel Ca2+ permeability and adaptation opposes the hypothesis that adaptation is controlled simply by Ca2+ influx through the channels. During the first postnatal week of mouse development, the MET currents amplitude grew, and transducer adaptation became faster and more effective. We attribute changes in adaptation partly to a developmental switch from TMC2- to TMC1- containing channels and partly to an increase in channel expression. More complete and faster adaptation, coupled with larger MET currents, may account for the sole use of TMC1 in the adult cochlear hair cells.


Subject(s)
Adaptation, Physiological , Hair Cells, Auditory/metabolism , Mechanotransduction, Cellular , Membrane Proteins/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Hair Cells, Auditory/physiology , Ion Channel Gating , Ion Channels/metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mutation
3.
Nat Commun ; 9(1): 2185, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29872055

ABSTRACT

Functional mechanoelectrical transduction (MET) channels of cochlear hair cells require the presence of transmembrane channel-like protein isoforms TMC1 or TMC2. We show that TMCs are required for normal stereociliary bundle development and distinctively influence channel properties. TMC1-dependent channels have larger single-channel conductance and in outer hair cells (OHCs) support a tonotopic apex-to-base conductance gradient. Each MET channel complex exhibits multiple conductance states in ~50 pS increments, basal MET channels having more large-conductance levels. Using mice expressing fluorescently tagged TMCs, we show a three-fold increase in number of TMC1 molecules per stereocilium tip from cochlear apex to base, mirroring the channel conductance gradient in OHCs. Single-molecule photobleaching indicates the number of TMC1 molecules per MET complex changes from ~8 at the apex to ~20 at base. The results suggest there are varying numbers of channels per MET complex, each requiring multiple TMC1 molecules, and together operating in a coordinated or cooperative manner.


Subject(s)
Cochlea/physiology , Hair Cells, Auditory/physiology , Mechanotransduction, Cellular/physiology , Membrane Proteins/metabolism , Animals , Animals, Newborn , Cochlea/cytology , Cochlea/metabolism , Hair Cells, Auditory/metabolism , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/physiology , Hair Cells, Auditory, Outer/metabolism , Hair Cells, Auditory, Outer/physiology , Hair Cells, Vestibular/metabolism , Hair Cells, Vestibular/physiology , Mechanotransduction, Cellular/genetics , Membrane Proteins/genetics , Mice, Knockout , Mice, Transgenic , Stereocilia/metabolism , Stereocilia/physiology
4.
Nat Commun ; 8(1): 43, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28663585

ABSTRACT

Inner ear hair cells detect sound through deflection of stereocilia, the microvilli-like projections that are arranged in rows of graded heights. Calcium and integrin-binding protein 2 is essential for hearing and localizes to stereocilia, but its exact function is unknown. Here, we have characterized two mutant mouse lines, one lacking calcium and integrin-binding protein 2 and one carrying a human deafness-related Cib2 mutation, and show that both are deaf and exhibit no mechanotransduction in auditory hair cells, despite the presence of tip links that gate the mechanotransducer channels. In addition, mechanotransducing shorter row stereocilia overgrow in hair cell bundles of both Cib2 mutants. Furthermore, we report that calcium and integrin-binding protein 2 binds to the components of the hair cell mechanotransduction complex, TMC1 and TMC2, and these interactions are disrupted by deafness-causing Cib2 mutations. We conclude that calcium and integrin-binding protein 2 is required for normal operation of the mechanotransducer channels and is involved in limiting the growth of transducing stereocilia.Inner ear hair cells detect sound through deflection of stereocilia that harbor mechanically-gated channels. Here the authors show that protein responsible for Usher syndrome, CIB2, interacts with these channels and is essential for their function and hearing in mice.


Subject(s)
Calcium-Binding Proteins/metabolism , Hair Cells, Auditory/physiology , Mechanotransduction, Cellular/physiology , Membrane Proteins/metabolism , Animals , Calcium-Binding Proteins/genetics , Deafness/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Membrane Proteins/genetics , Mice , Mutation , Patch-Clamp Techniques
5.
Proc Natl Acad Sci U S A ; 113(24): 6767-72, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27162344

ABSTRACT

Cochlear hair cells normally detect positive deflections of their hair bundles, rotating toward their tallest edge, which opens mechanotransducer (MT) channels by increased tension in interciliary tip links. After tip-link destruction, the normal polarity of MT current is replaced by a mechanically sensitive current evoked by negative bundle deflections. The "reverse-polarity" current was investigated in cochlear hair cells after tip-link destruction with BAPTA, in transmembrane channel-like protein isoforms 1/2 (Tmc1:Tmc2) double mutants, and during perinatal development. This current is a natural adjunct of embryonic development, present in all wild-type hair cells but declining after birth with emergence of the normal-polarity current. Evidence indicated the reverse-polarity current seen developmentally was a manifestation of the same ion channel as that evident under abnormal conditions in Tmc mutants or after tip-link destruction. In all cases, sinusoidal fluid-jet stimuli from different orientations suggested the underlying channels were opened not directly by deflections of the hair bundle but by deformation of the apical plasma membrane. Cell-attached patch recording on the hair-cell apical membrane revealed, after BAPTA treatment or during perinatal development, 90-pS stretch-activated cation channels that could be blocked by Ca(2+) and by FM1-43. High-speed Ca(2+) imaging, using swept-field confocal microscopy, showed the Ca(2+) influx through the reverse-polarity channels was not localized to the hair bundle, but distributed across the apical plasma membrane. These reverse-polarity channels, which we propose to be renamed "unconventional" mechanically sensitive channels, have some properties similar to the normal MT channels, but the relationship between the two types is still not well defined.


Subject(s)
Hair Cells, Auditory/metabolism , Mechanotransduction, Cellular , Calcium/metabolism , Ion Channels/metabolism
6.
J Gen Physiol ; 146(3): 233-43, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26324676

ABSTRACT

Sound stimuli are converted into electrical signals via gating of mechano-electrical transducer (MT) channels in the hair cell stereociliary bundle. The molecular composition of the MT channel is still not fully established, although transmembrane channel-like protein isoform 1 (TMC1) may be one component. We found that in outer hair cells of Beethoven mice containing a M412K point mutation in TMC1, MT channels had a similar unitary conductance to that of wild-type channels but a reduced selectivity for Ca(2+). The Ca(2+)-dependent adaptation that adjusts the operating range of the channel was also impaired in Beethoven mutants, with reduced shifts in the relationship between MT current and hair bundle displacement for adapting steps or after lowering extracellular Ca(2+); these effects may be attributed to the channel's reduced Ca(2+) permeability. Moreover, the density of stereociliary CaATPase pumps for Ca(2+) extrusion was decreased in the mutant. The results suggest that a major component of channel adaptation is regulated by changes in intracellular Ca(2+). Consistent with this idea, the adaptive shift in the current-displacement relationship when hair bundles were bathed in endolymph-like Ca(2+) saline was usually abolished by raising the intracellular Ca(2+) concentration.


Subject(s)
Calcium Signaling , Calcium/metabolism , Hair Cells, Auditory , Hearing Loss/physiopathology , Mechanotransduction, Cellular , Membrane Proteins/metabolism , Animals , Cells, Cultured , Membrane Proteins/genetics , Mice , Mice, Mutant Strains , Mutagenesis, Site-Directed , Mutation/genetics , Structure-Activity Relationship
7.
Neuron ; 87(4): 797-812, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26291162

ABSTRACT

Persistent mechanical hypersensitivity that occurs in the setting of injury or disease remains a major clinical problem largely because the underlying neural circuitry is still not known. Here we report the functional identification of key components of the elusive dorsal horn circuit for mechanical allodynia. We show that the transient expression of VGLUT3 by a discrete population of neurons in the deep dorsal horn is required for mechanical pain and that activation of the cells in the adult conveys mechanical hypersensitivity. The cells, which receive direct low threshold input, point to a novel location for circuit initiation. Subsequent analysis of c-Fos reveals the circuit extends dorsally to nociceptive lamina I projection neurons, and includes lamina II calretinin neurons, which we show also convey mechanical allodynia. Lastly, using inflammatory and neuropathic pain models, we show that multiple microcircuits in the dorsal horn encode this form of pain.


Subject(s)
Amino Acid Transport Systems, Acidic/biosynthesis , Hyperalgesia/metabolism , Nerve Net/metabolism , Pain/metabolism , Spinal Cord Dorsal Horn/metabolism , Touch , Animals , Hyperalgesia/pathology , Mice , Mice, Knockout , Nerve Net/pathology , Organ Culture Techniques , Pain/pathology , Spinal Cord Dorsal Horn/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...